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Abstract

The Model-free Prediction Principle of Politis (2015) has been successfully applied

to general regression problems, as well as problems involving stationary time series.

However, with long time series, e.g. annual temperature measurements spanning over

100 years or daily financial returns spanning several years, it may be unrealistic to

assume stationarity throughout the span of the dataset. In the paper at hand, we show

how Model-free Prediction can be applied to handle time series that are only locally

stationary, i.e., they can be assumed to be as stationary only over short time-windows.

Surprisingly there is little literature on point prediction for general locally stationary

time series even in model-based setups and there is no literature on the construction of

prediction intervals of locally stationary time series. We attempt to fill this gap here as

well. Both one-step-ahead point predictors and prediction intervals are constructed, and

the performance of model-free is compared to model-based prediction using models that

incorporate a trend and/or heteroscedasticity. Both aspects of the paper, model-free and

model-based, are novel in the context of time-series that are locally (but not globally)

stationary. We also demonstrate the application of our Model-based and Model-free

prediction methods to speleothem climate data which exhibits local stationarity and

show that our best model-free point prediction results outperform that obtained with

the RAMPFIT algorithm previously used for analysis of this data.
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1 Introduction

Consider a real-valued time series dataset Y1, . . . , Yn spanning a long time interval, e.g. an-

nual temperature measurements spanning over 100 years or daily financial returns spanning

several years. It may be unrealistic to assume that the stochastic structure of time series

{Yt, t ∈ Z} has stayed invariant over such a long stretch of time; hence, we can not assume

that {Yt} is stationary. More realistic is to assume a slowly-changing stochastic structure,

i.e., a locally stationary model – see (Priestley, 1965), (Priestley, 1988), (Dahlhaus et al.,

1997) and (Dahlhaus, 2012).

Our objective is predictive inference for the next data point Yn+1, i.e., constructing a

point and interval predictor for Yn+1. The usual approach for dealing with nonstationary

series is to assume that the data can be decomposed as the sum of three components:

μ(t) + St +Wt

where μ(t) is a deterministic trend function, St is a seasonal (periodic) time series, and

{Wt} is (strictly) stationary with mean zero; this is the ‘classical’ decomposition of a time

series to trend, seasonal and stationary components. The seasonal (periodic) component,

be it random or deterministic, can be easily estimated and removed; see e.g. (Brockwell

& Davis, 1991). Having done that, the ‘classical’ decomposition simplifies to the following

model with additive trend, i.e.,

Yt = μ(t) +Wt (1)

which can be generalized to accomodate a time-changing variance as well, i.e.,

Yt = μ(t) + σ(t)Wt. (2)

In both above models, the time series {Wt} is assumed to be (strictly) stationary, weakly

dependent, e.g. strong mixing, and satisfying EWt = 0; in model (2), it is also assumed

that Var (Wt) = 1. As usual, the deterministic functions μ(·) and σ(·) are unknown but

assumed to belong to a class of functions that is either finite-dimensional (parametric) or not

(nonparametric); we will focus on the latter, in which case it is customary to assume that

μ(·) and σ(·) possess some degree of smoothness, i.e., that μ(t) and σ(t) change smoothly

(and slowly) with t.

Remark 1.1 (Quantifying smoothness) To analyze locally stationary series it is some-

times useful to map the index set {1, . . . , n} onto the interval [0, 1]. In that respect, consider

two functions μ
[0,1]

: [0, 1] �→ R and σ
[0,1]

: [0, 1] �→ (0,∞), and let

μ(t) = μ
[0,1]

(at) and σ(t) = σ
[0,1]

(at) (3)
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where at = (t−1)/n for t = 1, . . . , n. We will assume that μ
[0,1]

(·) and σ
[0,1]

(·) are continuous
and smooth, i.e., possess k continuous derivatives on [0, 1]. To take full advantage of the

local linear smoothers of Section 2.2 ideally one would need k ≥ 2. However, all methods to

be discussed here are valid even when μ
[0,1]

(x) and σ
[0,1]

(x) are continuous for all x ∈ [0, 1]

but only piecewise smooth.

As far as capturing the first two moments of Yt, models (1) and (2) are considered

general and flexible—especially when μ(·) and σ(·) are not parametrically specified—and

have been studied extensively; see e.g. (Zhou & Wu, 2009), (Zhou & Wu, 2010). However,

it may be that the skewness and/or kurtosis of Yt changes with t, in which case centering

and studentization alone can not render the problem stationary. To see why, note that

under model (2), EYt = μ(t) and VarYt = σ2(t); hence,

Wt =
Yt − μ(t)

σ(t)
(4)

cannot be (strictly) stationary unless the skewness and kurtosis of Yt are constant. Fur-

thermore, it may be the case that the nonstationarity is due to a feature of the m–th

dimensional marginal distribution not being constant for some m ≥ 1, e.g., perhaps the

correlation Corr(Yt, Yt+1) changes smoothly (and slowly) with t. Notably, models (1) and

(2) only concern themselves with features of the 1st marginal distribution.

For all the above reasons, it seems valuable to develop a methodology for the statistical

analysis of nonstationary time series that does not rely on simple additive models such as

(1) and (2). Fortunately, the Model-free Prediction Principle of (Politis, 2013), (Politis,

2015) suggests a way to accomplish Model-free inference—including the construction of

prediction intervals—in the general setting of time series that are only locally stationary.

The key towards Model-free inference is to be able to construct an invertible transformation

Hn : Y n �→ εn where εn = (ε1, . . . , εn)
′ is a random vector with i.i.d. components; the details

are given in Section 3. The next section revisits the problem of model-based inference in

a locally stationary setting, and develops a bootstrap methodology for the construction of

(model-based) prediction intervals. Both approaches, Model-based of Section 2 and Model-

free of Section 3, are novel, and they are empirically compared to each other in Section 5

using finite sample experiments. Both synthetic and real-life data are used for this purpose.

The prototype of local (but not global) stationarity is manifested in climate data ob-

served over long periods. In Section 6 we focus on the speleothem climate archive data

discussed in (Fleitmann et al., 2003) whose statistical analysis is presented in (Mudelsee,

2014). This dataset which is shown in Figure 1 contains oxygen isotope record obtained

from stalagmite Q5 from southern Oman over the past 10,300 years. In this figure delta-O-

18 on the Y-axis is a measure of the ratio of stable isotopes oxygen-18 (18O) and oxygen-16
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(16O) and Age (a B.P. where B.P. indicates Before Present) on the X-axis denotes time

before the present i.e. time increases from right to left. Details of how delta-O-18 is defined

can be found on https://en.wikipedia.org/wiki/%CE%9418O. Along the growth axis of

the nearly 1 meter long speleothem (which is in this case stalagmite), approximately ev-

ery 0.7 mm about 5 mg material (calcium carbonate) was drilled, thereby yielding n=1345

samples. This carbonate was then analyzed to determine the delta-O-18 values.

The oxygen isotope ratio serves as a proxy variable for the climate variable monsoon

rainfall. This data can be used for climate analysis applications such as whether there

exists solar influences on the variations in monsoon rainfall; here low values of delta-O-18

would indicate a strong monsoon. The full dataset can be referenced at:

http://manfredmudelsee.com/book/data/1-7.txt. Previously the RAMPFIT algorithm

(Mudelsee, 2000) has been used to fit data that exhibit change points such as the speleothem

climate archive. However RAMPFIT was not designed to handle arbitrary locally stationary

data which maybe present in climate time series. In Section 6 we focus on a part of the delta-

O-18 proxy variable data that contains a linear trend and apply our Model-Free and Model-

Based algorithms over this range to estimate the performance of both point prediction

and prediction intervals. We then show that our best Model-Free point predictor achieves

superior performance in point prediction compared to RAMPFIT; notably, RAMPFIT was

not originally designed to estimate prediction intervals.

In Section 4 we also describe techniques for diagnostics which are useful for Model-Free

prediction in order to successfully generate both point predictors and prediction intervals.

Model-Based and Model-Free algorithms for the construction of prediction intervals are

described in detail in Appendix A. The RAMPFIT algorithm used to generate point pre-

diction results for comparison with our model-free and model-based methods is described

in Appendix B.

2 Model-based inference

Throughout Section 2, we will assume model (2)—that includes model (1) as a special case—

together with a nonparametric assumption on smoothness of μ(·) and σ(·) as described in

Remark 1.1.

2.1 Theoretical optimal point prediction

It is well-known that the L2–optimal predictor of Yn+1 given the data Y n = (Y1, . . . , Yn)
′ is

the conditional expectation E(Yn+1|Y n). Furthermore, under model (2), we have

E(Yn+1|Y n) = μ(n+ 1) + σ(n+ 1)E(Wn+1|Y n). (5)
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Figure 1: Oxygen Isotope Record from stalagmite Q5 from southern Oman (1345 samples)

where B.P. indicates Before Present

For j < J , define FJ
j (Y ) to be the information set {Yj , Yj+1, . . . , YJ}, also known as

σ–field, and note that the information sets F t−∞(Y ) and F t−∞(W ) are identical for any t,

i.e., knowledge of {Ys for s < t} is equivalent to knowledge of {Ws for s < t}; here, μ(·) and
σ(·) are assumed known. Hence, for large n, and due to the assumption that Wt is weakly

dependent (and therefore the same must be true for Yt as well), the following large-sample

approximation is useful, i.e.,

E(Wn+1|Y n) � E(Wn+1|Ys, s ≤ n) = E(Wn+1|Ws, s ≤ n) � E(Wn+1|Wn) (6)

where Wn = (W1, . . . ,Wn)
′.

All that is needed now is to construct an approximation for E(Wn+1|Wn). Usual ap-

proaches involve either assuming that the time series {Wt} is Markov of order p as in (Pan

& Politis, 2016), or approximating E(Wn+1|Wn) by a linear function of Wn as in (McMurry

& Politis, 2015), i.e., contend ourselves with the best linear predictor of Wn+1 denoted by

Ē(Wn+1|Wn).

Taking the latter approach, the L2–optimal linear predictor of Wn+1 based on Wn is

Ē(Wn+1|Wn) = φ1(n)Wn + φ2(n)Wn−1 + . . .+ φn(n)W1, (7)

where the optimal coefficients φi(n) are computed from the normal equations, i.e., φ(n) ≡
(φ1(n), · · · , φn(n))

′ = Γ−1
n γ(n); here, Γn = [γ|i−j|]ni,j=1 is the autocovariance matrix of the

random vectorWn, and γ(n) = (γ1, . . . , γn)
′ where γk = EYjYj+k. Of course, Γn is unknown

but can be estimated by any of the positive definite estimators developed in (McMurry &

Politis, 2015).
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Alternatively, the L2–optimal linear predictor of Wn+1 can be obtained by fitting a

(causal) AR(p) model to the data W1, . . . ,Wn with p chosen by minimizing AIC or a related

criterion; this would entail fitting the model:

Wt = φ1Wt−1 + φ2Wt−2 + · · ·+ φpWt−p + Vt (8)

where Vt is a stationary white noise, i.e., an uncorrelated sequence, with mean zero and

variance τ2. The implication then is that

Ē(Wn+1|Wn) = φ1Wn + φ2Wn−1 + · · ·+ φpWn−p+1. (9)

As discussed in the rejoinder to (McMurry & Politis, 2015), the two methods for constructing

Ē(Wn+1|Wn) are closely related; in fact, predictor (7) coincides with the above AR–type

predictor if the matrix Γn is the one implied by the fitted AR(p) model (8). We will use

the AR–type predictor in the sequel because it additionally affords us the possibility of

resampling based on model (8).

2.2 Trend estimation and practical prediction

To construct the L2–optimal predictor (5), we need to estimate the smooth trend μ(·)
and variance σ(·) in a nonparametric fashion; this can be easily accomplished via kernel

smoothing—see e.g. (Härdle & Vieu, 1992), (Kim & Cox, 1996), (Li & Racine, 2007). When

confidence intervals for μ(t) and σ(t) are required, however, matters are more complicated

as the asymptotic distribution of the different estimators depends on many unknown pa-

rameters; see e.g. (Masry & Tjøstheim, 1995). Even more difficult is the construction of

prediction intervals.

Note, furthermore, that the problem of prediction of Yn+1 involves estimating the func-

tions μ
[0,1]

(a) and σ
[0,1]

(a) described in Remark 1.1 for a = 1, i.e., it is essentially a boundary

problem. In such cases, it is well-known that local linear fitting has better properties—in

particular, smaller bias—than kernel smoothing which is well-known to be tantamount to

local constant fitting; (Fan & Gijbels, 1996),(Fan & Yao, 2007), or (Li & Racine, 2007).

Remark 2.1 (One-sided estimation) Since the goal is predictive inference on Yn+1, lo-

cal constant and/or local linear fitting must be performed in a one-sided way. To see why,

recall that in predictor (5), the estimands involve μ
[0,1]

(1) and σ
[0,1]

(1) as just mentioned.

Furthermore to compute Ē(Wn+1|Wn) in eq. (7) we need access to the stationary data

W1, . . . ,Wn in order to estimate Γn. The Wt’s are not directly observed, but—much like

residuals in a regression—they can be reconstructed by eq. (4) with estimates of μ(t) and

σ(t) plugged-in. What is important is that the way Wt is reconstructed/estimated by

(say) Ŵt must remain the same for all t, otherwise the reconstructed data Ŵ1, . . . , Ŵn
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can not be considered stationary. Since Wt can only be estimated in a one-sided way for

t close to n, the same one-sided way must also be implemented for t in the middle of the

dataset even though in that case two-sided estimation is possible.

By analogy to model-based regression as described in (Politis, 2013), the one-sided

Nadaraya-Watson (NW) kernel estimators of μ(t) and σ(t) can be defined in two ways. In

what follows, the notation tk = k will be used; this may appear redundant but it makes clear

that tk is the kth design point in the time series regression, and allows for easy extension in

the case of missing data. Note that the bandwidth parameter b will be assumed to satisfy

b → ∞ as n → ∞ but b/n → 0, (10)

i.e., b is analogous to the product hn where h is the usual bandwidth in nonparametric

regression, see e.g. We will assume throughout that K(·) is a nonnegative, symmetric

kernel function.

1. NW–Regular fitting: Let t ∈ [b+ 1, n], and define

μ̂(t) =

t∑
i=1

Yi K̂

(
t− ti
b

)
and M̂(t) =

t∑
i=1

Y 2
i K̂(

t− ti
b

) (11)

where

σ̂(t) =

√
M̂t − μ̂(t)2 and K̂

(
t− ti
b

)
=

K( t−ti
b )∑t

k=1K( t−tk
b )

. (12)

Using μ̂(t) and σ̂(t) we can now define the fitted residuals by

Ŵt =
Yt − μ̂(t)

σ̂(t)
for t = b+ 1, . . . , n. (13)

2. NW–Predictive fitting (delete-1): Let

μ̃(t) =
t−1∑
i=1

Yi K̃

(
t− ti
b

)
and M̃(t) =

t−1∑
i=1

Y 2
i K̃(

t− ti
b

) (14)

where

σ̃(t) =

√
M̃t − μ̃(t)2 and K̃

(
t− ti
b

)
=

K( t−ti
b )∑t−1

k=1K( t−tk
b )

. (15)

Using μ̃(t) and σ̃(t) we now define the predictive residuals by

W̃t =
Yt − μ̃(t)

σ̃(t)
for t = b+ 1, . . . , n. (16)
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Similarly, the one-sided local linear (LL) fitting estimators of μ(t) and σ(t) can be defined

in two ways.

1. LL–Regular fitting: Let t ∈ [b+ 1, n], and define

μ̂(t) =

∑t
j=1wjYj∑t

j=1wj + n−2
and M̂(t) =

∑t
j=1wjY

2
j∑t

j=1wj + n−2
(17)

where

wj = K(
t− tj
b

) [st,2 − (t− tj)st,1] , (18)

and st,k =
∑t

j=1K(
t−tj
b )(t − tj)

k for k = 0, 1, 2. The term n−2 in eq. (17) is just to

ensure the denominator is not zero; see Fan (1993). Eq. (12) then yields σ̂(t), and

eq. (13) yields Ŵt.

2. LL–Predictive fitting (delete-1): Let

μ̃(t) =

∑t−1
j=1wjYj∑t−1

j=1wj + n−2
and M̃(t) =

∑t−1
j=1wjY

2
j∑t−1

j=1wj + n−2
(19)

where

wj = K(
t− tj
b

) [st−1,2 − (t− tj)st−1,1] . (20)

Eq. (15) then yields σ̃(t), and eq. (16) yields W̃t.

Using one of the above four methods (NW vs. LL, regular vs. predictive) gives estimates of

the quantities needed to compute the L2–optimal predictor (5). In order to approximate

E(Wn+1|Y n), one would treat the proxies Ŵt or W̃t as if they were the true Wt, and proceed

as outlined in Section 2.1.

Remark 2.2 (Predictive vs. regular fitting) In order to estimate μ(n+1) and σ(n+1),

the predictive fits μ̃(n + 1) and σ̃(n + 1) are constructed in a straightforward manner.

However, the formula giving μ̂(t) and σ̂(t) changes when t becomes greater than n; this

is due to an effective change in kernel shape since part of the kernel is not used when

t > n. Focusing momentarily on the trend estimators, what happens is that the formulas

for μ̃(t) and μ̂(t)—although different when t ≤ n—become identical when t > n except for

the difference in kernel shape. Traditional model-fitting ignores these issues, i.e., proceeds

with using different formulas for estimation of μ(t) according to whether t ≤ n or t >

n. However, in trying to predict the new, unobserved Wn+1 we need to first capture its

statistical characteristics, and for this reason we need a sample of Wt’s. But the residual

from the model at t = n + 1 looks like W̃n+1 from either regular or predictive approach,
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since μ̃(t) and μ̂(t) become the same when t = n+1; it is apparent that traditional model-

fitting tries to capture the statistical characteristics of W̃n+1 from a sample of Ŵt’s, i.e.,

comparing apples to oranges. Herein lies the problem which is analogous to the discussion

on prediction using fitted vs. predictive residuals in nonparametric regression as discussed

in (Politis, 2013). Therefore, our preference is to use the predictive quantities μ̃(t), σ̃(t),

and W̃t throughout the predictive modeling.

Remark 2.3 (Time series cross-validation) To choose the bandwidth b for either of

the above methods, predictive cross-validation may be used but it must be adapted to

the time series prediction setting, i.e., always one-step-ahead. To elaborate, let k < n,

and suppose only subseries Y1, . . . , Yk has been observed. Denote Ŷk+1 the best predictor

of Yk+1 based on the data Y1, . . . , Yk constructed according to the above methodology

and some choice of b. However, since Yk+1 is known, the quality of the predictor can be

assessed. So, for each value of b over a reasonable range, we can form either PRESS(b) =∑n−1
k=ko

(Ŷk+1−Yk+1)
2 or PRESAR(b) =

∑n−1
k=ko

|Ŷk+1−Yk+1|; here ko should be big enough

so that estimation is accurate, e.g., ko can be of the order of
√
n. The cross-validated

bandwidth choice would then be the b that minimizes PRESS(b); alternatively, we can

choose to minimize PRESAR(b) if an L1 measure of loss is preferred. Finally, note that a

quick-and-easy (albeit suboptimal) version of the above is to use the (supoptimal) predictor

Ŷk+1 � μ̂(k + 1) and base PRESS(b) or PRESAR(b) on this approximation.

2.3 Model-based prediction intervals

To go from point prediction to prediction intervals, some form of resampling is required.

Since model (2) is driven by the stationary sequence {Wt}, a model-based bootstrap can then

be concocted in which {Wt} is resampled, giving rise to the bootstrap pseudo-series {W ∗
t },

which in turn gives rise to bootstrap pseudo-data {Y ∗
t } via a fitted version of model (2).

To generate a stationary bootstrap pseudo-series {W ∗
t }, two popular time series resampling

methods are (a) the stationary bootstrap of (Politis & Romano, 1994) and (b) the AR

bootstrap which entails treating the Vt appearing in eq. (8) as if they were i.i.d., performing

an i.i.d. bootstrap on them, and then generating {W ∗
t } via the recursion (8) driven by the

bootstrapped innovations. We will use the latter in the sequel because it ties in well with the

AR-type predictor of Wn+1 developed at the end of Section 2.1, and it is more amenable to

the construction of prediction intervals as discussed in (Pan & Politis, 2016). In addition,

(Kreiss, Paparoditis, & Politis, 2011) have recently shown that the AR bootstrap—also

known as AR-sieve bootstrap since p is allowed to grow with n—can be valid under some

conditions even if the Vt of eq. (8) are not trully i.i.d.

We will now develop an algorithm for the construction of model-based prediction in-

tervals; this is a ‘forward’ bootstrap algorithm in the terminology of (Pan & Politis, 2016)
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although a ‘backward’ bootstrap algorithm can also be concocted. To describe it in general,

let μ̌(·) and σ̌(·) be our chosen estimates of μ(·) and σ(·) according to one of the abovemen-

tioned four methods (NW vs. LL, regular vs. predictive); also let W̌t denote the resulting

proxies for the unobserved Wt for t = 1, . . . , n. Hence, our approximation to the L2–optimal

point predictor of Yn+1 is

Π = μ̌(n+ 1) + σ̌(n+ 1)
[
φ̂1W̌n + · · ·+ φ̂pW̌n−p+1

]
(21)

where φ̂1, . . . , φ̂p are the Yule-Walker estimators of φ1, . . . , φp appearing in eq. (8).

As discussed in Chapter 2 of (Politis, 2015) the construction of prediction intervals will

be based on approximating the distribution of the predictive root: Yn+1 −Π by that of the

bootstrap predictive root: Y ∗
n+1−Π∗ where the quantities Y ∗

n+1 and Π∗ are formally defined

in the Model-based (MB) bootstrap algorithm outlined below.

Algorithm 2.1 Model-based bootstrap for prediction intervals for Yn+1

1. Based on the data Y1, . . . , Yn, calculate the estimators μ̌(·) and σ̌(·), and the ‘residuals’

W̌1, . . . , W̌n using model (2).

2. Fit the AR(p) model (8) to the series W̌1, . . . , W̌n (with p selected by AIC minimiza-

tion), and obtain the Yule-Walker estimators φ̂1, . . . , φ̂p, and the error proxies

V̌t = W̌t − φ̂1W̌t−1 − · · · − φ̂pW̌t−p for t = p+ b+ 1, . . . , n.

Here b is the bandwidth determined by the cross-validation procedure of Remark 2.3.

3. (a) Let V̌ ∗
t for t = 1, . . . , n, n + 1 be drawn randomly with replacement from the set

{ ˇ̌Vt for t = p + b + 1, . . . , n} where ˇ̌Vt = V̌t − (n − p − b)−1
∑n

i=p+b+1 V̌i. Let I

be a random variable drawn from a discrete uniform distribution on the values

{p + b, p + b + 1, . . . , n}, and define the bootstrap initial conditions W̌ ∗
t = W̌t+I

for t = −p + 1, . . . , 0. Then, create the bootstrap data W̌ ∗
1 , . . . , W̌

∗
n via the AR

recursion

W̌ ∗
t = φ̂1W̌

∗
t−1 + · · ·+ φ̂pW̌

∗
t−p + V̌ ∗

t for t = 1, . . . , n.

(b) Create the bootstrap pseudo-series Y ∗
1 , . . . , Y

∗
n by the formula

Y ∗
t = μ̌(t) + σ̌(t)W̌ ∗

t for t = 1, . . . , n.

(c) Re-calculate the estimators μ̌∗(·) and σ̌∗(·) from the bootstrap data Y ∗
1 , . . . , Y

∗
n .

This gives rises to new bootstrap ‘residuals’ 1 on which an AR(p) model is again

fitted yielding the bootstrap Yule-Walker estimators φ̂∗
1, . . . , φ̂

∗
p.

1The bootstrap estimators μ̌∗(·) and σ̌∗(·) are based on bandwidth b′ determined by Algorithm A.3 given

in Appendix A. This may be different from the bandwidth b found using model-based cross-validation.
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(d) Calculate the bootstrap predictor

Π∗ = μ̌∗(n+ 1) + σ̌∗(n+ 1)
[
φ̂∗
1W̌n + . . .+ φ̂∗

pW̌n−p+1

]
.

[Note that in calculating the bootstrap conditional expectation of W̌ ∗
n+1 given its

p–past, we have re-defined the values (W̌ ∗
n , . . . , W̌

∗
n−p+1) to make them match the

original (W̌n, . . . , W̌n−p+1); this is an important part of the ‘forward’ bootstrap

procedure for prediction intervals as discussed in (Pan & Politis, 2016)].

(e) Calculate a bootstrap future value

Y ∗
n+1 = μ̌(n+ 1) + σ̌(n+ 1)W̌ ∗

n+1

where again W̌ ∗
n+1 = φ̂1W̌n + · · · + φ̂pW̌n−p+1 + V̌ ∗

n+1 uses the original values

(W̌n, . . . , W̌n−p+1); recall that V̌
∗
n+1 has already been generated in step (a) above.

(f) Calculate the bootstrap root replicate Y ∗
n+1 −Π∗.

4. Steps (a)—(f) in the above are repeated a large number of times (say B times), and

the B bootstrap root replicates are collected in the form of an empirical distribution

whose α–quantile is denoted by q(α).

5. Finally, a (1− α)100% equal-tailed prediction interval for Yn+1 is given by

[Π + q(α/2), Π+ q(1− α/2)]. (22)

It is easy to see that prediction interval (22) is asymptotically valid (conditionally on

Y1, . . . , Yn) provided: (i) estimators μ̌(n+1) and σ̌(n+1) are consistent for their respective

targets μ
[0,1]

(1) and σ
[0,1]

(1), and (ii) the AR(p) approximation is consistent allowing for

the possibility that p grows as n → ∞. If μ̌(·) and σ̌(·) correspond to one of the above

mentioned four methods (NW vs. LL, regular vs. predictive), then provision (i) is satisfied

under standard conditions including the bandwidth condition (10). Provision (ii) is also

easy to satisfy as long as the spectral density of the series {Wt} is continuous and bounded

away from zero; see e.g. Lemma 2.2 of (Kreiss et al., 2011).

Although desirable, asymptotic validity does not tell the whole story. A prediction

interval can be thought to be successful if it also manages to capture the finite-sample

variability of the estimated quantities such as μ̌(·), σ̌(·) and φ̂1, φ̂2, . . .. Since this finite-

sample variability vanishes asymptotically, the performance of a prediction interval such

as (22) must be gauged by finite-sample simulations. Results of these simulations are

shown in Section 5.
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3 Model-free inference

Model (2) is a flexible way to account for a time-changing mean and variance of Yt. However,

nothing precludes that the time series {Yt for t ∈ Z} has a nonstationarity in its third (or

higher moment), and/or in some other feature of its mth marginal distribution. A way

to address this difficulty, and at the same time give a fresh perspective to the problem, is

provided by the Model-Free Prediction Principle of Politis (2013, 2015).

The key towards Model-free inference is to be able to construct an invertible transfor-

mation Hn : Y n �→ εn where εn = (ε1, . . . , εn)
′ is a random vector with i.i.d. components. In

order to do this in our context, let some m ≥ 1, and denote by L(Yt, Yt−1, . . . , Yt−m+1)

the mth marginal of the time series Yt , i.e. the joint probability law of the vector

(Yt, Yt−1, . . . , Yt−m+1)
′. Although we abandon model (2) in what follows, we still want to em-

ploy nonparametric smoothing for estimation; thus, we must assume that L(Yt, Yt−1, . . . , Yt−m+1)

changes smoothly (and slowly) with t.

Remark 3.1 (Quantifying smoothness–model-free case) As in Remark 1.1, we can

formally quantify smoothness by mapping the index set {1, . . . , n} onto the interval [0, 1].

Let s = (s0, s1, . . . , sm−1)
′, and define the distribution function of the mth marginal by

D
(m)
t (s) = P{Yt ≤ s0, Yt−1 ≤ s1, . . . , Yt−m+1 ≤ sm−1}.

Let at = (t− 1)/n as before, and assume that we can write

D
(m)
t (s) = D

[0,1]

at (s) for t = 1, . . . , n. (23)

We can now quantify smoothness by assuming that, for each fixed s, the function D
[0,1]

x (s)

is continuous and smooth in x ∈ [0, 1], i.e., possesses k continuous derivatives. As in

Remark 1.1, here as well it seems to be sufficient that D
[0,1]

x (s) is continuous in x but only

piecewise smooth.

A convenient way to ensure both the smoothness and data-based consistent estimation

of L(Yt, Yt−1, . . . , Yt−m+1) is to assume that, for all t,

Yt = ft(Wt,Wt−1, . . . ,Wt−m+1) (24)

for some function ft(w) that is smooth in both arguments t and w, and some strictly

stationary and weakly dependent, univariate time series Wt; without loss of generality, we

may assume that Wt is a Gaussian time series. In fact, Eq. (24) with ft(·) not depending on

t is a familiar assumption in studying non-Gaussian and/or long-range dependent stationary

processes—see e.g. (Samorodnitsky & Taqqu, 1994). By allowing ft(·) to vary smoothly
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(and slowly) with t, Eq. (24) can be used to describe a rather general class of locally

stationary processes. Note that model (2) is a special case of Eq. (24) with m = 1, and the

function ft(w) being affine/linear in w. Thus, for concreteness and easy comparison with

the model-based case of Eq. (2), we will focus in the sequel on the case m = 1. Section

3.10 discusses how to handle the case m > 1.

3.1 Constructing the theoretical transformation

Hereafter, adopt the setup of Eq. (24) with m = 1, and let

Dt(y) = P{Yt ≤ y}

denote the 1st marginal distribution of time series {Yt}. Throughout Section 3, the default

assumption will be that Dt(y) is (absolutely) continuous in y for all t; however, a departure

from this assumption will be discussed in Section 3.8.

We now define new variables via the probability integral transform, i.e., let

Ut = Dt(Yt) for t = 1, . . . , n; (25)

the assumed continuity of Dt(y) in y implies that U1, . . . , Un are random variables having

distribution Uniform (0, 1). However, U1, . . . , Un are dependent; to transform them to

independence, a preliminary transformation towards Gaussianity is helpful as discussed in

(Politis, 2013). Letting Φ denote the cumulative distribution function (cdf) of the standard

normal distribution, we define

Zt = Φ−1(Ut) for t = 1, . . . , n; (26)

it then follows that Z1, . . . , Zn are standard normal—albeit correlated—random variables.

Let Γn denote the n × n covariance matrix of the random vector Zn = (Z1, . . . , Zn)
′.

Under standard assumptions, e.g. that the spectral density of the series {Zt} is continuous

and bounded away from zero,2 the matrix Γn is invertible when n is large enough. Consider

the Cholesky decomposition Γn = CnC
′
n where Cn is (lower) triangular, and construct the

whitening transformation:

εn = C−1
n Zn. (27)

It then follows that the entries of εn = (ε1, . . . , εn)
′ are uncorrelated standard normal. As-

suming that the random variables Z1, . . . , Zn were jointly normal, this can be strenghtened

2If the spectral density is equal to zero over an interval—however small—then the time series {Zt} is

perfectly predictable based on its infinite past, and the same would be true for the time series {Yt}; see

Brockwell and Davis (1991, Theorem 5.8.1) on Kolmogorov’s formula.
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to claim that ε1, . . . , εn are i.i.d. N(0, 1); see Section 3.10 for further discussion. Conse-

quently, the transformation of the dataset Y n = (Y1, . . . , Yn)
′ to the vector εn with i.i.d. com-

ponents has been achieved as required in premise (a) of the Model-free Prediction Principle.

Note that all the steps in the transformation, i.e., eqs. (25), (26) and (27), are invertible;

hence, the composite transformation Hn : Y n �→ εn is invertible as well.

3.2 Kernel estimation of the ‘uniformizing’ transformation

We first focus on estimating the ‘uniformizing’ part of the transformation, i.e., eq. (25).

Recall that the Model-free setup implies that the function Dt(·) changes smoothly (and

slowly) with t; hence, local constant and/or local linear fitting can be used to estimate

it. Using local constant, i.e., kernel estimation, a consistent estimator of the marginal

distribution Dt(y) is given by:

D̂t(y) =

T∑
i=1

1{Yti ≤ y}K̃(
t− ti
b

) (28)

where K̃( t−ti
b ) = K( t−ti

b )/
∑T

j=1K(
t−tj
b ). Note that the kernel estimator (28) is one-sided

for the same reasons discussed in Remark 2.1. Since D̂t(y) is a step function in y, a smooth

estimator can be defined as:

D̄t(y) =

T∑
i=1

Λ(
y − Yti
h0

)K̃(
t− ti
b

) (29)

where h0 is a secondary bandwidth. Furthermore, as in Section 2.2, we can let T = t or

T = t − 1 leading to a fitted vs. predictive way to estimate Dt(y) by either D̂t(y) or

D̄t(y). Cross-validation is used to determine the bandwidths h0 and b ; details are described

in Section 3.5.

3.3 Local linear estimation of the ‘uniformizing’ transformation

Note that the kernel estimator D̂t(y) defined in eq. (28) is just the Nadaraya-Watson

smoother, i.e., local average, of the variables u1, . . . , un where ui = 1{Yi ≤ y}. Similarly,

D̄t(y) defined in eq. (29) is just the Nadaraya-Watson smoother of the variables v1, . . . , vn

where vi = Λ(y−Yi

h0
). In either case, it is only natural to try to consider a local linear

smoother as an alternative to Nadaraya-Watson especially since, once again, our interest

lies on the boundary, i.e., the case t = n.

Let D̂LL
t (y) and D̄LL

t (y) denote the local linear estimators of Dt(y) based on either

the indicator variables 1{Yi ≤ y} or the smoothed variables Λ(y−Yi

h0
) respectively. Keeping

y fixed, D̂LL
t (y) and D̄LL

t (y) exhibit good behavior for estimation at the boundary, e.g.
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smaller bias than either D̂t(y) and D̄t(y) respectively. However, there is no guarantee that

these will be proper distribution functions as a function of y, i.e., being nondecreasing in y

with a left limit of 0 and a right limit of 1; see (Li & Racine, 2007) for a discussion.

There have been several proposals in the literature to address this issue. An interesting

one is the adjusted Nadaraya-Watson estimator of (Hall, Wolff, & Yao, 1999) which, how-

ever, is tailored towards nonparametric autoregression estimation rather than our setting

where Yt is regressed on t. Coupled with the fact that we are interested in the boundary

case t = n, the equation yielding the adjusted Nadaraya-Watson weights do not always

admit a solution.

One proposed solution put forward by (Hansen, 2004) involves a straightforward adjust-

ment to the local linear estimator of a conditional distribution function that maintains its

favorable asymptotic properties. The local linear versions of D̂t(y) and D̄t(y) adjusted via

Hansen’s (2004) proposal are given as follows:

D̂LLH
t (y) =

∑T
i=1w

�
i 1(Yi ≤ y)∑T
i=1w

�
i

and D̄LLH
t (y) =

∑T
i=1w

�
iΛ(

y−Yi

h0
)∑T

i=1w
�
i

. (30)

The weights w�
i are defined by

w�
i =

⎧⎨
⎩ 0 when β̂(t− ti) > 1

wi(1− β̂(t− ti)) when β̂(t− ti) ≤ 1
(31)

where

wi =
1

b
K(

t− ti
b

) and β̂ =

∑T
i=1 wi(t− ti)∑T
i=1 wi(t− ti)2

. (32)

As with eq. (28)and (29), we can let T = t or T = t−1 in the above, leading to a fitted

vs. predictive local linear estimators of Dt(y), by either D̂LLH
t (y) or D̄LLH

t (y).

3.4 Uniformization using Monotone Local Linear Distribution Estimation

Hansen’s (2004) proposal replaces negative weights by zeros, and then renormalizes the

nonzero weights. The problem here is that if estimation is performed on the boundary (as in

the case with one-step ahead prediction of time-series), negative weights are crucially needed

in order to ensure the extrapolation takes place with minimal bias. A recent proposal by

(Das & Politis, 2017) addresses this issue by modifying the original, possibly nonmonotonic

local linear distribution estimator D̄LL
t (y) to construct a monotonic version denoted by

D̄LLM
t (y).
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The Monotone Local Linear Distribution Estimator D̄LLM
t (y) can be constructed by

Algorithm 3.1 given below.

Algorithm 3.1 Monotone Local Linear Distribution Estimation

1. Recall that the derivative of D̄LL
t (y) with respect to y is given by

d̄LLt (y) =
1
h0

∑n
j=1wjλ(

y−Yj

h0
)∑n

j=1wj

where λ(y) is the derivative of Λ(y).

2. Define a nonnegative version of d̄LLt (y) as d̄LL+t (y) = max(d̄LLt (y), 0).

3. To make the above a proper density function, renormalize it to area one, i.e., let

d̄LLMt (y) =
d̄LL+t (y)∫∞

−∞ d̄LL+t (s)ds
. (33)

4. Finally, define D̄LLM
t (y) =

∫ y
−∞ d̄LLMt (s)ds.

The above modification of the local linear estimator allows one to maintain monotonicity

while retaining the negative weights that are helpful in problems which involve estimation

at the boundary. As with eq. (28)and (29), we can let T = t or T = t − 1 in the above,

leading to a fitted vs. predictive local linear estimators of Dt(y) that are monotone.

Different algorithms could also be employed for performing monotonicity correction on

the original estimator D̄LL
t (y); these are discussed in detail in (Das & Politis, 2017). In prac-

tice, Algorithm 3.1 is preferable because it is the fastest in term of implementation; notably,

density estimates can be obtained in a fast way (using the Fast Fourier Transform) using

standard functions in statistical software such as R. Computational speed is particularly

important in constructing bootstrap prediction intervals since a large number of estimates

of D̄LLM
t (y) must be computed; the same is true for cross-validation implementation which

is addressed next.

3.5 Cross-validation Bandwidth Choice for Model-Free Inference

There are two bandwidths, b and h0, required to construct the estimators D̄t(y), D̄
LLH
t (y)

and D̄LLM
t (y). This discussion first focuses on choice of b as it is the most crucial of the

two. The following steps are recommended:
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Algorithm 3.2 BANDWIDTH DETERMINATION FOR MODEL-FREE INFERENCE

1. Perform the uniformizing transform described in (25) over the given time-series dataset

Y1, . . . , Yn using either of the estimators D̄t(y), D̄LLH
t (y) or D̄LLM

t (y) over q pre-

defined bandwidths that span an interval of possible values.

2. Calculate the value of the Kolmogorov-Smirnov (KS) test statistic using the uniform

distribution U [0, 1] as reference for each of these q cases.

3. From the full list of q values given in step (1) above pick a pre-defined number of

bandwidths, say this is p, whose corresponding KS test statistic values are minimum.

These represent the bandwidths which achieved the best transformation to ‘uniformity’

using D̄t(y), D̄
LLH
t (y) or D̄LLM

t (y).

4. Obtain the best bandwidth b among these p values by using one-sided cross-validation

in a similar manner as described for the Model-Based case in Section 2.2. For this

purpose let k < n, and suppose only subseries Y1, . . . , Yk has been observed. De-

note Ŷk+1 the best predictor of Yk+1 based on the data Y1, . . . , Yk constructed us-

ing D̄t(y), D̄LLH
t (y) or D̄LLM

t (y) and a value of b selected among the p values ob-

tained above. Since Yk+1 is known, the quality of the predictor can be assessed.

So, for each value of b we can form either PRESS(b) =
∑n−1

k=ko
(Ŷk+1 − Yk+1)

2 or

PRESAR(b) =
∑n−1

k=ko
|Ŷk+1 − Yk+1|; here ko should be big enough so that estimation

is accurate, e.g., ko can be of the order of
√
n. We then select the bandwidth b that

minimizes PRESS(b); alternatively, we can choose to minimize PRESAR(b) if an

L1 measure of loss is preferred.

5. Coming back to the problem of selecting h0, as in (Politis, 2013), our final choice

is h0 = h2 where h = b/n. Note that an initial choice of h0 needed (to perform

uniformization, KS statistic generation and cross-validation to determine the optimal

bandwidth b) can be set by any plug-in rule; the effect of choosing an initial value of

h0 is minimal.

The above algorithm needs large data sizes in order to work well. In the case of smaller

data sizes of, say, a hundred or so data points, it is recommended to omit steps (1)–(3) and

directly perform steps (4) and (5) using the full range of q pre-defined bandwidths.

3.6 Estimation of the whitening transformation

To implement the whitening transformation (27), it is necessary to estimate Γn, i.e., the

n × n covariance matrix of the random vector Zn = (Z1, . . . , Zn)
′ where the Zt are the

normal random variables defined in eq. (26).
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As discussed in the analogous model-based problem in Section 2.1, there are two ap-

proaches towards positive definite estimation of Γn based on the sample Z1, . . . , Zn. They

are both based on the sample autocovariance defined as γ̆k = n−1
∑n−|k|

t=1 ZtZt+|k| for |k| < n;

for |k| ≥ n, we define γ̆k = 0.

A. Fit a causal AR(p) model to the data Z1, . . . , Zn with p obtained via AIC minimiza-

tion. Then, let Γ̂AR
n be the n × n covariance matrix associated with the fitted AR

model. Let γ̂AR
|i−j| denote the i, j element of the Toeplitz matrix Γ̂AR

n . Using the Yule-

Walker equations to fit the AR model implies that γ̂AR
k = γ̆k for k = 0, 1, . . . , p. For

k > p, γ̂AR
k can be found by solving (or just iterating) the difference equation that

characterizes the (fitted) AR model; R automates this process via the ARMAacf()

function.

B. Let Γ̂n =
[
γ̂|i−j|

]n
i,j=1

be the matrix estimator of (McMurry & Politis, 2010) where γ̂s =

κ(|s|/l)γ̆s. Here, κ(·) can be any member of the flat-top family of compactly supported

functions defined in (Politis, 2001) the simplest choice—that has been shown to work

well in practice—is the trapezoidal, i.e.., κ(x) = (max{1, 2 − |x|})+ where (y)+ =

max{y, 0} is the positive part function, (Politis & Romano, 1994). Our final estimator

of Γn will be Γ̂�
n which is a a positive definite version of Γ̂n that is banded and Toeplitz;

for example, Γ̂�
n may be obtained by shrinking Γ̂n towards white noise or towards a

second order estimator as described in McMurry and Politis (2015).

Estimating the ‘uniformizing’ transformation Dt(·) and the whitening trasformation

based on Γn allows us to estimate the transformation Hn : Y n �→ εn. However, in order to

put the Model-Free Prediction Principle to work, we also need to estimate the transforma-

tion Hn+1 (and its inverse). To do so, we need a positive definite estimator for the matrix

Γn+1; this can be accomplished by either of the two ways discussed in the above.

A′. Let Γ̂AR
n+1 be the (n+ 1)× (n+ 1) covariance matrix associated with the fitted AR(p)

model.

B′. Denote by γ̂�|i−j| the i, j element of Γ̂�
n for i, j = 1, . . . , n. Then, define Γ̂�

n+1 to be the

symmetric, banded Toeplitz (n+ 1) × (n+ 1) matrix with ij element given by γ̂�|i−j|
when |i− j| < n. Recall that Γ̂�

n is banded with banding parameter l as discussed in

(McMurry & Politis, 2015), so it is only natural to assign zeros to the two ij elements

of Γ̂�
n+1 that satisfy |i− j| = n, i.e., the bottom left and the top right.

Consider the ‘augmented’ vectors Y n+1 = (Y1, . . . , Yn, Yn+1)
′, Zn+1 = (Z1, . . . , Zn, Zn+1)

′

and εn+1 = (ε1, . . . , εn, εn+1)
′ where the values Yn+1, Zn+1 and εn+1 are yet unobserved. We

now show how to obtain the inverse transformation H−1
n+1 : εn+1 �→ Y n+1. Recall that εn

18



and Y n are related in a one-to-one way via transformation Hn, so the values Y1, . . . , Yn are

obtainable by Y n = H−1
n (εn). Hence, we just need to show how to create the unobserved

Yn+1 from εn+1; this is done in the following three steps.

Algorithm 3.3 GENERATION OF UNOBSERVED DATAPOINT FROM FUTURE IN-

NOVATIONS

i. Let

Zn+1 = Cn+1εn+1 (34)

where Cn+1 is the (lower) triangular Cholesky factor of (our positive definite estimate

of) Γn+1. From the above, it follows that

Zn+1 = cn+1εn+1 (35)

where cn+1 = (c1, . . . , cn, cn+1) is a row vector consisting of the last row of matrix

Cn+1.

ii. Create the uniform random variable

Un+1 = Φ(Zn+1). (36)

iii. Finally, define

Yn+1 = D−1
n+1(Un+1); (37)

of course, in practice, the above will be based on an estimate of D−1
n+1(·).

Since Y n has already been created using (the first n coordinates of) εn+1, the above com-

pletes the construction of Y n+1 based on εn+1, i.e., the mapping H−1
n+1 : εn+1 �→ Y n+1.

3.7 Model-free predictors and prediction intervals

In the previous sections, it was shown how the construct the transformation Hn : Y n �→ εn
and its inverse H−1

n+1 : εn+1 �→ Y n+1, where the random variables ε1, ε2, . . . , are i.i.d. Note

that by combining eq. (35), (36) and (37) we can write the formula:

Yn+1 = D−1
n+1

(
Φ( cn+1εn+1)

)
.

Recall that cn+1εn+1 =
∑n

i=1 ciεi + cn+1εn+1; hence, the above can be compactly denoted

as

Yn+1 = gn+1(εn+1) where gn+1(x) = D−1
n+1

(
Φ

(
n∑

i=1

ciεi + cn+1x

))
. (38)
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Eq. (38) is the predictive equation required in the Model-free Prediction Principle; condi-

tionally on Y n, it can be used like a model equation in computing the L2– and L1–optimal

point predictors of Yn+1. We will give these in detail as part of the general algorithms for

the construction of Model-free predictors and prediction intervals.

Algorithm 3.4 Model-free (MF) predictors and prediction intervals for Yn+1

1. Construct U1, . . . , Un by eq. (25) with Dt(·) estimated by either D̄t(·) , D̄LLH
t (·) or

D̄LLM
t (·); for all the 3 types of estimators, use the respective formulas with T = t.

2. Construct Z1, . . . , Zn by eq. (26), and use the methods of Section 3.6 to estimate Γn

by either Γ̂AR
n or Γ̂�

n.

3. Construct ε1, . . . , εn by eq. (27), and let F̂n denote their empirical distribution.

4. The Model-free L2–optimal point predictor of Yn+1 is then

Ŷn+1 =

∫
gn+1(x)dFn(x) =

1

n

n∑
i=1

gn+1(εi)

where the function gn+1 is defined in the predictive equation (38) with Dn+1(·) being
again estimated by either D̄n+1(·) , D̄LLH

n+1 (·) or D̄LLM
n+1 (·) all with T = t.

5. The Model-free L1–optimal point predictor of Yn+1 is given by the median of the set

{gn+1(εi) for i = 1, . . . , n}.

6. Prediction intervals for Yn+1 with prespecified coverage probability can be constructed

via the Model-free Boootstrap of Algorithm A.1 based on either the L2– or L1–optimal

point predictor.

Algorithm 3.4 used the construction of D̄t(·) , D̄LLH
t (·) or D̄LLM

t (·) with T = t; using

T = t− 1 instead, leads to the predictive version of the algorithm.

Algorithm 3.5 Predictive Model-free (PMF) predictors and prediction in-

tervals for Yn+1

The algorithm is identical to Algorithm 3.5 except for using T = t − 1 instead of T = t in

the construction of D̄t(·) , D̄LLH
t (·) and D̄LLM

t (·).

Remark 3.2 Under a model-free setup of a locally stationary time series, (Paparoditis &

Politis, 2002) proposed the Local Block Bootstrap (LBB) in order to generate pseudo-series
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Y ∗
1 , . . . , Y

∗
n whose probability structure mimics that of the observed data Y1, . . . , Yn. The

Local Block Bootstrap has been found useful for the construction of confidence intervals;

see (Dowla A. & Politis D.N, 2003) and (Dowla, Paparoditis, & Politis, 2013). However, it

is unclear if/how the LBB can be employed for the construction of predictors and prediction

intervals for Yn+1.

Recall that when the theoretical transformation Hn is employed, the variables ε1, . . . , εn

are i.i.d. N(0, 1). Due to the fact that features of Hn are unknown and must be esti-

mated from the data, the practically available variables ε1, . . . , εn are only approximately

i.i.d. N(0, 1). However, their empirical distribution of F̂n converges to F = Φ as n → ∞.

Hence, it is possible to use the limit distribution F = Φ in instead of F̂n in both the con-

struction of point predictors and the prediction intervals; this is an application of the Limit

Model-Free (LMF) approach as discussed in (Politis, 2015).

The LMF Algorithm is simpler than Algorithm 3.5 as the first three steps of the latter

can be omitted. As a matter of fact, the LMF Algorithm is totally based on the inverse

transformation H−1
n+1 : εn+1 �→ Y n+1; the forward transformation Hn : Y n �→ εn is not

needed at all. But for the inverse transformation it is sufficient to estimate Dt(y) by the

step functions D̂t(y) , D̂LLH
t (y) or D̂LLM

t (y) with the understanding that their inverse

must be a quantile inverse; recall that the quantile inverse of a distribution D(y) is defined

as D−1(β) = inf{y such that D(y) ≥ β}.

Algorithm 3.6 Limit Model-free (LMF) predictors and prediction intervals

for Yn+1

1. The LMF L2–optimal point predictor of Yn+1 is

Ŷn+1 =

∫
gn+1(x)dΦ(x) (39)

where the function gn+1 is defined in the predictive equation (38) where Dn+1(·) is

estimated by either D̂n+1(·) , D̂LLH
n+1 (·) or D̂LLM

n+1 (·) all with T = t− 1.

2. In practice, the integral (39) can be approximated by Monte Carlo, i.e.,

∫
gn+1(x)dΦ(x) � 1

M

M∑
i=1

gn+1(xi)

where x1, . . . , xM are generated as i.i.d. N(0, 1), and M is some large integer.

3. Using the above Monte Carlo framework, the LMF L1–optimal point predictor of Yn+1

can be approximated by the median of the set {gn+1(xi) for i = 1, . . . ,M}.
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4. Prediction intervals for Yn+1 with prespecified coverage probability can be constructed

via the LMF Boootstrap of Algorithm A.2 based on either the L2– or L1–optimal point

predictor.

Remark 3.3 Interestingly, there is a closed-form solution for the LMF L1–optimal point

predictor of Yn+1 that can also be used in Step 5 of Algorithm 3.4. To elaborate, first

note that under the assumed weak dependence, e.g. strong mixing, of the series {Yt} (and

therefore also of {Zt}), we have the following approximations (for large n), namely:

Median (Zn+1|Fn
1 (Z)) � Median

(
Zn+1|Fn

−∞(Z)
)

= Median
(
Zn+1|Fn

−∞(Y )
) � Median (Zn+1|Fn

1 (Y )) .

Now eq. (36) and (37) imply that Yn+1 = D−1
n+1 (Φ(Zn+1)) . Since Dn+1(·) and Φ(·) are

strictly increasing functions, it follows that the Model-free L1–optimal predictor of Yn+1

equals

Median (Yn+1|Fn
1 (Y )) = D−1

n+1 (Φ (Median (Zn+1|Fn
1 (Y ))))

� D−1
n+1 (Φ (Median (Zn+1|Fn

1 (Z)))) = D−1
n+1 (Φ (E (Zn+1|Fn

1 (Z)))) , (40)

the latter being due to the symmetry of the normal distribution of Zn+1 given Fn
1 (Z).

But, as in eq. (7), we have E (Zn+1|Fn
1 (Z)) = φ1(n)Zn + φ2(n)Zn−1 + . . .+ φn(n)Z1 where

(φ1(n), · · · , φn(n))
′ = Γ−1

n γ(n). Plugging-in either D̄n+1(·) , D̄LLH
n+1 (·) or D̄LLM

n+1 (·) in place

of Dn+1(·) in eq. (40), and also employing consistent estimates of Γn and γ(n) completes

the calculation. As discussed in Section 3.6, Γn can be estimated by either Γ̂AR
n or by

the positive definite banded estimator Γ̂�
n with a corresponding estimator for γ(n); see

(McMurry & Politis, 2015) for details.

Remark 3.4 (Robustness of LMF approach) The LMF approach focuses completely

on the predictive equation (38) for which an estimate of (the inverse of) Dn+1(·) must be

provided; interestingly, estimating Dt(y) for t �= n + 1 is nowhere used in Algorithm 3.6.

In the usual case where the kernel K(·) is chosen to have compact support, estimating

Dn+1(·) is only based on the last b data values Yn−b+1, . . . , Yn. Hence, in order for the LMF

Algorithm 3.6 to be valid, the sole requirement is that the subseries Yn−b+1, . . . , Yn, Yn+1 is

approximately stationary. In other words, the first (and biggest) part of the data, namely

Y1, . . . , Yn−b, can suffer from arbitrary nonstationarities, change points, outliers, etc. without

the LMF predictive inference for Yn+1 being affected; this robustness of the LMF approach

is highly advantageous.
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3.8 Discrete-valued time series

Untill now, it has been assumed that Dt(y) is (absolutely) continuous in y for all t; in this

subsection, we briefly discuss a departure from this assumption.

Throughout subsection 3.8 we will assume that the locally stationary time series {Yt}
takes values in a countable set S ⊂ R; as an example, consider the case of a finite state

Markov chain whose first marginal changes smooth (and smoothly) with time. It is apparent

that Dt(y) is a step function; hence, step function estimators such as D̂t(y) , D̂LLH
t (y) or

D̂LLM
t (y) are preferable to their smoothed counterparts D̄t(y) , D̄LLH

t (y) or D̄LLM
t (y)

since the latter assign positive probabilities to values y �∈ S.

Fortunately, the LMF methodology of Algorithm 3.6 can be employed based on just

the step function estimators D̂t(y) , D̂
LLH
t (y) or D̂LLM

t (y). Note that with discrete data,

predicting Yn+1 by a conditional mean or median makes little sense since the latter will

likely not be in the set S; it is more appropriate to adopt a 0-1 loss function and predict

Yn+1 by the mode of the conditional distribution. A prediction interval is not appropriate

either unless the set S is of lattice form—and even then, problems ensue regarding non-

attainable α–levels. It is thus more informative to present an estimate of the conditional

distribution instead of summarizing the latter into a prediction interval.

A version of the LMF algorithm for discrete valued data is given below; (for details see

(Politis, 2015).

Algorithm 3.7 LMF bootstrap for predictive distribution of discrete-valued

Yn+1

1. Based on the data Y n, estimate the inverse transformation H−1
n by Ĥ−1

n (say). In

addition, estimate gn+1 by ĝn+1.

2. (a) Generate bootstrap pseudo-data ε∗1, ..., ε∗n as i.i.d. from F = Φ.

(b) Use the inverse transformation Ĥ−1
n to create pseudo-data in the Y domain, i.e.,

let Y ∗
n = (Y ∗

1 , ..., Y
∗
n )

′ = Ĥ−1
n (ε∗1, ..., ε∗n).

(c) Based on the bootstrap pseudo-data Y ∗
n, re-estimate the transformation Hn and

its inverse H−1
n by Ĥ∗

n and Ĥ−1∗
n respectively. In addition, re-estimate gn+1 by

ĝ∗n+1.

(d) Calculate a bootstrap pseudo-value Y ∗∗
n+1 as the point ĝ∗n+1(Y n, ε) where ε is gen-

erated from F = Φ.

3. Steps (a)—(d) in the above should be repeated B times (for some large B), and the B

bootstrap replicates of the pseudo-values Y ∗∗
n+1 are collected in the form of an empirical

distribution which is our Model-free estimate of the predictive distribution of Yn+1;

the mode of this distribution is the LMF optimal predictor of Yn+1 under 0-1 loss.
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3.9 Special case: strictly stationary data

It is interesting to consider what happens if/when the data Y1, . . . , Yn are a stretch of a

strictly stationary time series {Yt}. Of course, a time series that is strictly stationary is

a a fortiori locally stationary; so all the aforementioned procedures should work verbatim.

Nevertheless, one could take advantage of the stationarity to obtain better estimators;

effectively, one can take the bandwidth b to be comparable to n, i.e., employ global—as

opposed to local—estimators.

To elaborate, in the stationary case the distribution Dt(y) does not depend on t at

all. Hence, for the purposes of the LMF Algorithm 3.6—as well as the discrete data Algo-

rithm 3.7—we can estimate Dt(y) by the regular (non-local) empirical distribution

D̂(y) = n−1
n∑

t=1

1{Yt ≤ y}.

Furthermore, for the purposes of Algorithm 3.4 we can estimate the (assumed smooth)

Dt(y) by the smoothed empirical distribution

D̄(y) = n−1
n∑

t=1

Λ(
y − Yt
h0

)

where h0 is a positive bandwidth parameter satisfying h0 → 0 as n → ∞. As mentioned in

Section 3.5, the optimal rate is h0 ∼ n−2/5 when the estimand Dt(y) is sufficiently smooth

in y.

3.10 Local stationarity in a higher-dimensional marginal

The success of the theoretical transformation of Section 3.1 in transforming the data vector

Y n to the vector of i.i.d. components εn hinges on two conditions: (a) the nonstationarity

of {Yt} is only due to nonstationarity in its first marginal Dt(·), and (b) the instantaneous

transformation to Gaussianity also manages to create a Gaussian random vector, i.e., all

its finite-dimensional marginals are Gaussian. Both of these conditions can be empirically

checked. For example, condition (a) can be checked by looking at some features of interest

of the mth (say) marginal, e.g., looking at the autocorrelation Corr(Yt, Yt+m) estimated over

different subsamples of the data, and checking whether it depends on t. Condition (b) can

be checked by performing a normality test, e.g., Shapiro-Wilk test, or other diagnostics, e.g.,

quantile plot, on selected linear combinations of m consecutive components of the random

vector.

Interestingly, if either condition (a) or (b) seem to fail, there is a single solution to

address the problem, namely blocking the time series. To elaborate, one would then create
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blocks of data by defining Bt = (Yt, . . . , Yt+m−1)
′ for t = 1, . . . , q with q = n − m + 1.

Now focus on the multivariate time series dataset {B1, . . . , Bq}, and let D
(m)
t (·) denote the

distribution function of vector Bt which will be assumed to vary smoothly (and slowly) with

t as in Remark 3.1.

Using the (Rosenblatt, 1952) transformation, we can now map Bt to a random vector

Vt that has components3 i.i.d. Uniform (0,1), and then do the Gaussian transformation and

whitening as required by the Model-Free Principle. Thus, when the time series {Yt} is locally
stationary in its mth marginal, the algorithm to transform the dataset Y n = (Y1, . . . , Yn)

′

to an i.i.d. dataset goes as follows.

1. From the dataset Y n = (Y1, . . . , Yn)
′, create blocks/vectors Bt = (Yt, . . . , Yt+m−1)

′ for
t = 1, . . . , q with q = n−m+ 1.

2. Use the Rosenblatt transformation to map the multivariate dataset {B1, . . . , Bq} to

the dataset {V1, . . . , Vq}; here Vt = (V
(1)
t , . . . , V

(m)
t )′ is a random vector having com-

ponents that are i.i.d. Uniform (0,1).

3. Let Z
(j)
t = Φ−1(V

(j)
t ) for j = 1, . . . ,m, and t = 1, . . . , q where Φ is the cdf of a

standard normal. Note that, for each t, the variables Z
(1)
t , . . . , Z

(m)
t are i.i.d. N(0, 1).

4. Define the vector time series Zt = (Z
(1)
t , . . . , Z

(m)
t )′ that is multivariate Gaussian.

Estimate the (matrix) autocovariance sequence Cov(Zt, Zt+k) for k = 0, 1, . . ., and

use it to ‘whiten’ the sequence Z1, . . . , Zq, i.e., to map it (in a one-to-one way) to the

i.i.d. sequence ζ1, . . . , ζq; here, ζt ∈ Rm is a random vector having components that

are i.i.d. N(0, 1).

In Step 2 above, the mth dimensional Rosenblatt transformation can be estimated in prac-

tice using a local average or local linear estimator, i.e., a multivariate analog of D̄t(·) ,

D̄LLH
t (·) or D̄LLM

t (·) . Regarding Step 4, standard methods exist to estimate the (ma-

trix) autocovariance of Zt with Zt+k; see e.g. (Jentsch & Politis, 2015). Finally, note that

the map Hn : Y n �→ (ζ1, . . . , ζq)
′ is invertible since all four steps given above are one-to-

one. Hence, Model-free prediction can take place based on a multivariate version of the

Model-free Prediction Principle of (Politis, 2013); the details are straightforward.

3Recall that the (Rosenblatt, 1952) transformation maps an arbitrary random vector Y m = (Y1, . . . , Ym)′

having absolutely continuous joint distribution onto a random vector V m = (V1, . . . , Vm)′ whose entries are

i.i.d. Uniform(0,1); this is done via the probability integral transform based on conditional distributions.

To elaborate, for k > 1 define the conditional distributions Dk(yk|yk−1, . . . , y1) = P{Yk ≤ yk|Yk−1 =

yk−1, . . . , Y1 = y1}, and let D1(y1) = P{Y1 ≤ y1}. Then, the (Rosenblatt, 1952) transformation amounts to

letting V1 = D1(Y1), V2 = D2(Y2|Y1), V3 = D3(Y3|Y2, Y1), . . . , and Vm = Dm(Ym|Ym−1, . . . , Y2, Y1).
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4 Diagnostics for Model-Free Inference

The steps outlined in Section 3.1 for Model-Free inference involve generating samples from

both uniform U [0, 1] and standard normal distributions. Careful analysis is necessary to

ensure that the samples generated are from the correct distributions failing which the Model-

Free point and interval predictors will be inaccurate. The following discussion serves as an

aid to the practitioner to ensure realization of optimal performance for both point prediction

and prediction interval generation using the Model-Free methodology.

4.1 QQ-plots after uniformization

The success of the uniformization step outlined in Section 3.1 can be visually verified using

QQ-plots of the obtained uniform samples versus samples obtained from an ideal uniform

distribution which is available in standard statistical software such as R. Any deviations

in these curves from linearity should be closely investigated for possible issues wrt choice

of bandwidth during cross-validation as it can impact both point prediction and prediction

interval generation.

4.2 Shapiro-Wilk test for joint normality

The random vector Zn = (Z1, . . . , Zn)
′ from Section 3.6 should be tested for normality

in order to ensure that the described whitening transformation successfully produces i.i.d.

normal samples. Marginal normality of the data Z can be verified by gauging linearity of

QQ-plots versus the standard normal distribution. Furthermore the Cramer-Wold theorem

states that any linear combination of jointly normal variables is univariate normal. This can

be used to empirically verify whether the joint normality requirement is violated by taking

any linear combination i.e. for example a pair or triplet of variables from the set Zn =

(Z1, . . . , Zn)
′ and verify their normality using the Shapiro-Wilk test. An example of this is

provided in Figure 2 where for a given λ we form the linear combination (1− λ)Zi + λZi+1

over all obtained values Zn = (Z1, . . . , Zn)
′ and calculate the mean value of the Shapiro-

Wilk test statistic. This is done over a range of λ values. As can be seen from the plot

sufficiently high values of the test statistic are obtained which indicates that from this

particular test we cannot conclude that joint normality has been violated. Further tests

can be done by forming linear combinations over pairs of non-successive values of Z.

4.3 Kolomogorov-Smirnov test for i.i.d. standard normal samples

Provided that the inputs are jointly normal the whitening transformation described in

Section 3.6 produces i.i.d. standard normal variables. The covariance matrix used in this
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Figure 2: Values of Shapiro-Wilk test statistic for joint normality test. Note that corre-

sponding p-values range from 0.09 to 0.29.

step can be derived either by fitting a causal AR(p) model to Zn = (Z1, . . . , Zn)
′ or using

the flat-top kernel banded, tapered estimator outlined in (McMurry & Politis, 2010). To

verify that the data generated after whitening are standard normal a Kolmogorov-Smirnov

test can be used with the reference distribution as N [0, 1].

4.4 Independence test of standard normal samples

The success of the Model-Free procedure involves the ability to produce i.i.d. data af-

ter a series of invertible transformations. In the case of Locally Stationary Time Series

independence of the data produced at the final step after applying the whitening transfor-

mation can be verified visually using an autocorrelation function (ACF) plot as the data are

approximately standard normal. An example of this is given in Figure 3 where it can be no-

ticed from the ACF plot that the Model-Free transformations were successful in producing

decorrelated and therefore i.i.d. (normal) data.

5 Model-Free vs. Model-Based Inference: empirical com-

parisons

The performance of the Model-Free and Model-Based predictors described above are empir-

ically compared using both simulated and real-life datasets based on point prediction and

also calculation of prediction intervals. The Model-Based local constant and local linear

methods are denoted as MB-LC and MB-LL respectively. Model-Based predictors MB-LC
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Figure 3: Autocorrelation plot showing decorrelation/independence of data after whitening

transformation

and MB-LL are described in Section 2. The Model-Free methods using local constant, local

linear (Hansen) and local linear (Monotone) using the flat-top tapered covariance estima-

tor are denoted as MF-LC, MF-LLH, MF-LLM. Model-Free methods using local constant,

local linear (Hansen) and local linear (Monotone) using the covariance estimator obtained

from fitting a causal AR(p) model are denoted as MF-LC-ARMA, MF-LLH-ARMA, MF-

LLM-ARMA. Model-Free predictors are described in Section 3. The covariance estimators

using the flat-top tapered kernel and fitting an AR(p) model are discussed in Section 3.6.

Results are also shown for the LMF counterparts of these methods which are denoted

as LMF-LC, LMF-LLH, LMF-LLM and LMF-LC-ARMA, LMF-LLH-ARMA, LMF-LLM-

ARMA respectively. Results for all methods are given for both fitted (F) and predictive

(P) residuals. Following metrics are used to compare the estimators:

1. Point prediction performance as indicated by Bias and Mean Squared Error (MSE)

on simulated and real-life datasets using all Model-Based and Model-Free methods

listed above.

2. Bootstrap performance as indicated by coverage probability (CVR), mean length of

prediction intervals and standard deviation (sd) of length of prediction intervals. All

prediction interval metrics given in the following tables have been generated based on

a nominal coverage of 90%.
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5.1 Simulation: Additive model with stationary AR(5) errors

Data Yi for t = 1, . . . , 1000 were simulated as per model (1) with trend as in eq. (3), i.e.,

μ(t) = μ
[0,1]

(at) with at = (t − 1)/n and μ
[0,1]

(x) = sin(2πx). The series Wt is constructed

via an AR(5) model driven by errors Vt that are i.i.d. N(0, τ2); with τ = 0.14. The AR(5)

coefficients are set to 0.5, 0.1, 0.1, 0.1, 0.1. Sample size n is set to 1000. Point prediction and

prediction intervals are measured for boundary point n = 1000. Bandwidths for estimating

the trend are calculated using the cross-validation techniques for Model-Based and Model-

Free cases described in Sections 2.2 and 3.5 respectively.

Results for point prediction including bias and mean square error (MSE) over all MB

and MF methods are shown in Table 1 below. A total of 500 realizations of the dataset

were used for measuring point prediction performance.

Results for prediction intervals including CVR, length and standard deviation of the

predicted intervals over all MB and MF methods are shown in Table 2 below. A total of

250 realizations were used for measuring prediction interval performance. The number of

bootstrap replications B was set to 250.

From point-prediction results on this dataset it can be seen that one of the best predictors

is MB-LL; this is expected since the LL regression estimator is great for extrapolation, and

the innovations are generated using an AR model which is directly employed in the MB-LL

estimator. Nevertheless, predictors MF-LLM and MF-LLM-ARMA appear equally as good

which is re-assuring and surprising at the same time; it appears that—as with the case of

regression with independent errors (Das & Politis, 2017)—the monotonicity correction in

the LLM distribution estimator has minimal effect on the center of the distribution that is

used for point prediction. The MF-ARMA and LMF-ARMA outperform their respective

MF and LMF counterparts for point prediction; this is consistent with that fact that the

data is generated by an AR process and therefore the covariance estimator using AR(p)

estimation outperforms its flat-top tapered counterpart. However the MF-LLM, LMF-LLM,

MF-LLM-ARMA and LMF-LLM-ARMA estimators give the best prediction intervals when

both coverage probabilities and mean interval lengths are considered. This is a somewhat

surprising result given the fact that the data was generated using an AR(5) model, and one

would expect that the model-based estimator MB-LL would perform comparably with its

MF counterparts, i.e., MF-LLM and MF-LLM-ARMA, in terms of prediction intervals.

Among the MF estimators it is the MF-LLM, LMF-LLM, MF-LLM-ARMA and LMF-

LLM-ARMA methods that perform better than their LC and LLH counterparts both for

the flat-top tapered and AR(p) based covariance estimators. This improvement can be

attributed to using negative weights for estimation at the boundary with the Monotone

Local Linear Distribution estimator i.e. the LLM methods.

As before prediction interval coverage is enhanced using predictive as compared to fit-
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ted residuals which is consistent with the results of interval coverage using both types of

residuals as discussed for the regression case in (Politis, 2013).

5.2 Simulation: Additive model with nonlinearly generated errors

Data Yi for t = 1, . . . , 1000 were simulated from model (1) with trend as in eq. (3), i.e.,

μ(t) = μ
[0,1]

(at) with at = (t − 1)/n and μ
[0,1]

(x) = 5 ∗ sin(2πx). The series Wt is now

constructed via the nonlinear model given below:

Wt =

⎧⎨
⎩1 + αWt−1 + et if Wt−1 ≤ r

−1 + βWt−1 + γet if Wt−1 > r
(41)

where the errors et are assumed i.i.d. N(0, τ2). Eq. (41) describes a TAR(1) model, i.e.,

Threshold Autoregression of order 1; see (Tong, 2011) and the references therein. For our

implementation, we chose τ = 0.4, α = 0.5, β = −0.6, r = 0.6, γ = 1; the initial value of Wt

is set to 0, and n = 1000. A scatterplot showing Wt versus Wt−1 is shown in Figure 4. The

process of eq. (41) is not zero-mean; however its mean is removed during detrending either

with Model-Based or Model-Free methods. Point prediction and prediction intervals are

measured for boundary point n = 1000. Bandwidths for estimating the trend are calculated

using the cross-validation techniques for Model-Based and Model-Free cases described in

Sections 2.2 and 3.5 respectively.

Results for point prediction including bias and mean square error (MSE) over all MB

and MF methods are shown in Table 3 below. A total of 500 realizations of the dataset

were used for measuring point prediction performance.

Results for prediction intervals including CVR, length and standard deviation of the

predicted intervals over all MB and MF methods are shown in Table 4 below. A total of

250 realizations were used for measuring prediction interval performance. The number of

bootstrap replications B was set to 250.

From point-prediction results on this dataset it can be seen that the MF-LLM-ARMA

and LMF-LLM-ARMA estimators give the best performance. The MF-ARMA and LMF-

ARMA outperform their respective MF and LMF counterparts for point prediction. This is

consistent with that fact that the data is not generated by an MA process and therefore the

covariance estimator using AR(p) estimation outperforms its flat-top tapered counterpart

which assumes an MA model. The MF-LLM, LMF-LLM, MF-LLM-ARMA and LMF-

LLM-ARMA estimators give the best prediction intervals when both coverage probabilities

and mean interval lengths are considered. These results are somewhat expected since the
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Table 1: Point Prediction performance for AR(5) dataset

Prediction Method Residual Type Bias MSE

MB-LC P -2.899e-02 2.878e-02

F -3.310e-02 2.923e-02

MB-LL P -3.031e-03 2.848e-02

F -7.315e-03 2.841e-02

MF-LC P -3.910e-02 2.955e-02

F 4.327e-02 2.949e-02

MF-LLH P -3.591e-02 2.996e-02

F -4.177e-02 3.000e-02

MF-LLM P -2.716e-02 2.832e-02

F -3.599e-02 2.909e-02

LMF-LC P -3.915e-02 2.961e-02

F -4.349e-02 2.953e-02

LMF-LLH P -3.691e-02 2.996e-02

F -4.224e-02 3.010e-02

LMF-LLM P -2.753e-02 2.855e-02

F -3.614e-02 2.915e-02

MF-LC-ARMA P -3.418e-02 2.929e-02

F -3.932e-02 2.920e-02

MF-LLH-ARMA P -3.067e-02 2.941e-02

F -3.766e-02 2.917e-02

MF-LLM-ARMA P -2.226e-02 2.829e-02

F -3.219e-02 2.876e-02

LMF-LC-ARMA P -3.452e-02 2.957e-02

F -3.968e-02 2.942e-02

LMF-LLH-ARMA P -3.141e-02 2.942e-02

F -3.776e-02 2.927e-02

LMF-LLM-ARMA P -2.229e-02 2.824e-02

F -3.300e-02 2.893e-02
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Table 2: Interval estimation performance using bootstrap for AR(5) dataset

Prediction Method Residual Type CVR Mean Length SD Length

MB-LC P 0.88 7.001e-01 1.781e-01

F 0.83 5.598e-01 2.013e-01

MB-LL P 0.92 7.802e-01 1.718e-01

F 0.88 7.039e-01 1.725e-01

MF-LC P 0.85 7.443e-01 1.500e-01

F 0.83 6.362e-01 1.709e-01

MF-LLH P 0.88 7.489e-01 1.422e-01

F 0.84 6.495e-01 1.234e-01

MF-LLM P 0.89 7.343e-01 1.386e-01

F 0.88 6.422e-01 1.229e-01

LMF-LC P 0.86 7.424e-01 1.515e-01

F 0.83 6.373e-01 1.492e-01

LMF-LLH P 0.88 7.582e-01 1.386e-01

F 0.85 6.534e-01 1.275e-01

LMF-LLM P 0.89 7.423e-01 1.401e-01

F 0.88 6.460e-01 1.278e-01

MF-LC-ARMA P 0.85 7.452e-01 1.485e-01

F 0.80 6.317e-01 1.421e-01

MF-LLH-ARMA P 0.85 7.474e-01 1.416e-01

F 0.84 6.569e-01 1.286e-01

MF-LLM-ARMA P 0.88 7.362e-01 1.442e-01

F 0.87 6.502e-01 1.264e-01

LMF-LC-ARMA P 0.85 7.437e-01 1.485e-01

F 0.82 6.382e-01 1.452e-01

LMF-LLH-ARMA P 0.86 7.428e-01 1.389e-01

F 0.85 6.564e-01 1.254e-01

LMF-LLM-ARMA P 0.88 7.422e-01 1.423e-01

F 0.87 6.519e-01 1.278e-01
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Figure 4: Nonlinear time series scatterplot of Wt versus Wt−1.

innovations are generated using a nonlinear model and the MB methods use a linear predic-

tor. Therefore MF-LLM and LMF-LLM estimators perform better than their model-based

counterparts i.e. the MB-LL methods. However it is striking to see a Model-Free method

outperform the Model-Based ones when the additive model is true.

It can also be seen that for most cases prediction interval coverage is enhanced using

predictive as compared to fitted residuals which is consistent with the results of interval

coverage using both types of residuals as discussed for the regression case in (Politis, 2013).

6 Real-life example: Speleothem data

The Speleothem dataset first discussed in (Fleitmann et al., 2003) and further analyzed in

(Mudelsee, 2014) is an interesting real-life example to compare metrics of point prediction

and prediction intervals for all MB and MF estimators described before. This dataset which

is shown in Figure 1 contains oxygen isotope record (the ratio of 18O to 16O) from stalagmite

Q5 from southern Oman over the past 10,300 years. The oxygen isotope ratio obtained from

the speleothem climate archive serves as a proxy variable for the actual climate variable

monsoon rainfall. The full dataset has Yi for t = 1, . . . , 1345 points which are in general

obtained with unequal spacing. The following points should be noted in the context of our

analysis of the speleothem proxy dataset:

1. One important application of proxy data obtained from climate archives is prediction

of the unobserved climate variable values. This prediction is based on known values
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Table 3: Point Prediction performance for nonlinear dataset

Prediction Method Residual Type Bias MSE

MB-LC P -1.894e-01 8.420e-01

F -1.897e-01 8.542e-01

MB-LL P -1.109e-01 8.003e-01

F -1.082e-01 8.048e-01

MF-LC P -1.697e-01 8.616e-01

F -1.937e-01 8.407e-01

MF-LLH P -1.134e-01 8.345e-01

F -1.193e-01 8.137e-01

MF-LLM P -2.418e-02 8.208e-01

F -1.770e-02 7.886e-01

LMF-LC P -1.631e-01 8.671e-01

F -1.858e-01 8.456e-01

LMF-LLH P -1.004e-01 8.338e-01

F -1.108e-01 8.420e-01

LMF-LLM P -1.339e-02 8.287e-01

F -8.603e-03 7.941e-01

MF-LC-ARMA P -1.151e-01 8.233e-01

F -1.308e-01 8.003e-01

MF-LLH-ARMA P -1.346e-01 8.075e-01

F -1.370e-01 7.945e-01

MF-LLM-ARMA P -9.632e-03 7.861e-01

F -5.183e-03 7.849e-01

LMF-LC-ARMA P -1.214e-01 8.290e-01

F -1.390e-01 8.140e-01

LMF-LLH-ARMA P -1.274e-01 8.225e-01

F -1.340e-01 8.008e-01

LMF-LLM-ARMA P -4.025e-03 7.945e-01

F 2.181e-03 7.966e-01
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Table 4: Interval estimation performance using bootstrap for nonlinear dataset

Prediction Method Residual Type CVR Mean Length SD Length

MB-LC P 0.86 3.265 3.864e-01

F 0.81 2.837 3.841e-01

MB-LL P 0.85 3.123 3.383e-01

F 0.81 2.780 3.466e-01

MF-LC P 0.88 3.999 5.874e-01

F 0.90 2.954 4.272e-01

MF-LLH P 0.88 4.051 6.745e-01

F 0.84 2.732 4.605e-01

MF-LLM P 0.89 3.891 6.956e-01

F 0.86 2.657 4.726e-01

LMF-LC P 0.87 3.987 6.052e-01

F 0.88 2.942 4.133e-01

LMF-LLH P 0.88 4.042 6.797e-01

F 0.84 2.723 4.373e-01

LMF-LLM P 0.88 3.946 6.620e-01

F 0.84 2.661 4.558e-01

MF-LC-ARMA P 0.86 3.850 5.307e-01

F 0.89 2.896 4.343e-01

MF-LLH-ARMA P 0.89 3.917 6.602e-01

F 0.88 2.694 4.719e-01

MF-LLM-ARMA P 0.86 3.794 6.319e-01

F 0.85 2.614 4.766e-01

LMF-LC-ARMA P 0.88 3.981e 5.723e-01

F 0.89 2.966 4.423e-01

LMF-LLH-ARMA P 0.90 4.022 6.889e-01

F 0.86 2.764 4.451e-01

LMF-LLM-ARMA P 0.88 3.948 6.556e-01

F 0.86 2.659 4.844e-01
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Figure 5: Age (a B.P.) of delta-O-18 versus sample number

of proxy and climate variables which in this case are the oxygen isotope ratio and

monsoon rainfall respectively. Proxy data are also useful for construction of confidence

intervals for parameter estimates of the proxy variable model. In our case we use a

part of the proxy variable dataset which contains a linear trend for estimating the

performance of Model-Based and Model-Free predictors for the proxy variable delta-

O-18.

2. Proxy data obtained from climate archives may be obtained over either even or uneven

time spacing. In case of the speleothem dataset under consideration as shown in Figure

5 the spacing variations are small in general and definitely negligible over the part of

the dataset (last 62 points) where we perform prediction; see Figure 5 that depicts the

age versus sample number. Hence we will assume even time spacing in our analysis.

No interpolation is applied i.e. the number of time-points assumed with even spacing is

the same as the number of time points which are present with slightly uneven spacing

in the original dataset. It is to be noted that several other techniques such as Singular

Spectrum Analysis, Principal Component Analysis and Wavelet Analysis also assume

even spacing for time-series analysis. Extension of our methods to incorporate uneven

time spacing will be the focus of future work.

We consider the dataset over the last 270 points as shown in Figure 6. This dataset is

divided into 2 parts: the first part is used to determine the bandwidths for the MB and MF

estimators using methods outlined in Sections 2.2 and 3.5 respectively; the last 62 points are

used to calculate point prediction and prediction intervals. It can be noticed from Figures

1 and 6 that this last part of the data appears to have a linear trend. A moving window
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method is adopted for cross-validation i.e. for point Yt (whose metrics for point prediction

and prediction intervals are calculated) we use points [Yt−w, Yt−1] for cross-validation. Here

the value of w is set to 189. Note also that since this dataset contains a smaller number of

points, cross-validation was done over a range of bandwidths using only the last 2 steps of

Algorithm 3.2.

Results for point prediction including bias and mean square error (MSE) over all MB

and MF methods are shown in Table 5 below.

Results for prediction intervals including CVR, length and standard deviation of the

predicted intervals over all MB and MF methods are shown in Table 6 below. The number

of bootstrap replications B was set to 1000.

From point-prediction results on this dataset it can be seen that the MF-LLM and LMF-

LLM estimators give the best performance. The MF-LLM and LMF-LLM estimators also

have the highest coverage probabilities for prediction interval estimation among all estima-

tors that are considered here. For comparison purposes we have listed the performance of

point prediction using the RAMPFIT algorithm outlined in (Mudelsee, 2000) and also used

for the speleothem dataset in (Fleitmann et al., 2003).

RAMPFIT introduced by (Mudelsee, 2000) is a popular algorithm used to fit climate

data which show transitions such as the speleothem dataset. This algorithm was designed

to handle change points in climate time-series and to the best of our knowledge cannot

handle arbitrary local stationarity which may be present in data. Hence we chose to use

RAMPFIT to compare performance of point prediction versus that obtained using our MB

and MF point predictors. The MF-LLM-ARMA and LMF-LLM-ARMA estimators outper-

form RAMPFIT for point prediction as shown in Table 5. We attribute the superior results

of MF-LLM-ARMA and LMF-LLM-ARMA for point prediction and prediction intervals to

the most likely reason that the data is not compatible with the assumption of an additive

model. RAMPFIT was not originally designed to generate prediction interval estimates

hence comparisons of these interval metrics versus those obtained using our MB and MF

methods are not provided. The RAMPFIT algorithm is described in Appendix B.

For point prediction there is a difference in performance between fitted and predictive

residuals which is not the case with the simulation datasets discussed before. This is due to

finite sample effects as we use only a small part of the whole speleothem dataset to illustrate

the performance differences between the various estimators. Prediction interval coverage is

better using predictive as compared to fitted residuals which is consistent with the results

associated with i.i.d. regression (Politis, 2013).

As a final point, we consider the practical problem of out-of-sample prediction of the

next data point i.e. prediction of Y1346 using RAMPFIT and our best predictor (MF-LLM-

ARMA) chosen based on in-sample performance. The predicted values using RAMPFIT
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Figure 6: Speleothem data segment used for cross-validation and prediction

and MF-LLM-ARMA are nearly the same (which is reassuring), and approximately equal

to -0.81. The 90% prediction interval using MF-LLM is (−1.165,−0.513); as previously

mentioned, RAMPFIT cannot be used to generate a prediction interval.

A Appendix: Basic Model-free Bootstrap and Double Boot-

strap Algorithms

This section describes in detail algorithms A.1 and A.2 for the construction of Model-Free

and Limit Model-Free algorithms as described in (Politis, 2015). However note that we also

present new algorithms A.3 and A.4 to determine bandwidth inside the bootstrap loop for

the Model-Based and Model-Free cases.

Define the predictive root to be the error in prediction, i.e.,

Yn+1 −Π(ĝn+1, Y n, F̂n) (42)

where Π(ĝn+1, Y n, F̂n) is our chosen point predictor of Yn+1, and ĝn+1 is our estimate of

function gn+1 based on the data Y n.

Given bootstrap data Y ∗
n and Y ∗

n+1, the bootstrap predictive root is the error in predic-

tion in the bootstrap world, i.e.,

Y ∗
n+1 −Π(ĝ∗n+1, Y n, F̂n) (43)

where ĝ∗n+1 is our estimate of function gn+1 based on the bootstrap data Y ∗
n.
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Table 5: Point Prediction performance for speleothem dataset

Prediction Method Residual Type Bias MSE

MB-LC P -5.800e-03 4.248e-02

F -1.845e-02 4.081e-02

MB-LL P 1.219e-02 4.205e-02

F 1.227e-03 3.891e-02

MF-LC P -2.755e-02 4.006e-02

F -1.535e-02 3.805e-02

MF-LLH P -2.762e-02 3.683e-02

F -2.141e-02 3.925e-02

MF-LLM P -3.776e-03 3.513e-02

F -2.593e-02 3.730e-02

LMF-LC P -2.602e-02 3.959e-02

F -1.524e-02 3.815e-02

LMF-LLH P -2.672e-02 3.682e-02

F -2.060e-02 4.011e-02

LMF-LLM P 5.724e-03 3.494e-02

F -2.702e-02 3.643e-02

MF-LC-ARMA P -2.999e-02 4.171e-02

F -2.058e-02 3.874e-02

MF-LLH-ARMA P -1.8842e-02 4.242e-02

F -1.299e-02 3.894e-02

MF-LLM-ARMA P -3.235e-03 3.645e-02

F -2.077e-02 3.427e-02

LMF-LC-ARMA P -2.718e-02 4.143e-02

F -2.388e-02 3.953e-02

LMF-LLH-ARMA P -1.461e-02 4.550e-02

F -1.355e-02 4.095e-02

LMF-LLM-ARMA P 3.538e-03 3.721e-02

F -2.174e-02 3.550e-02

RAMPFIT Not Applicable 1.781e-02 3.913e-02
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Table 6: Interval estimation performance using bootstrap for speleothem dataset

Prediction Method Residual Type CVR Mean Length SD Length

MB-LC P 0.82 7.812e-01 2.178e-01

F 0.78 5.46e-01 1.885e-01

MB-LL P 0.87 8.731e-01 1.970e-01

F 0.84 7.254e-01 1.689e-01

MF-LC P 0.94 7.963e-01 1.631e-01

F 0.84 5.076e-01 1.525e-01

MF-LLH P 0.87 7.252e-01 1.372e-01

F 0.84 5.868e-01 1.747e-01

MF-LLM P 0.90 7.230e-01 1.914e-01

F 0.89 5.788e-01 1.774e-01

LMF-LC P 0.95 7.855e-01 1.804e-01

F 0.84 5.010e-01 1.454e-01

LMF-LLH P 0.89 7.284e-01 1.396e-01

F 0.81 5.568e-01 1.613e-01

LMF-LLM P 0.90 7.397e-01 1.946e-01

F 0.89 6.145e-01 1.814e-01

MF-LC-ARMA P 0.90 8.088e-01 1.535e-01

F 0.86 5.754e-01 1.665e-01

MF-LLH-ARMA P 0.86 7.701e-01 1.588e-01

F 0.80 5.759e-01 1.911e-01

MF-LLM-ARMA P 0.89 7.427e-01 1.715e-01

F 0.86 5.819e-01 1.973e-01

LMF-LC-ARMA P 0.89 8.213e-01 1.721e-01

F 0.84 5.690e-01 1.599e-01

LMF-LLH-ARMA P 0.87 7.783e-01 1.527e-01

F 0.78 5.772e-01 1.916e-01

LMF-LLM-ARMA P 0.91 7.780e-01 1.818e-01

F 0.87 6.234e-01 2.096e-01
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Remark A.1 Note that eq. (43) depends on the bootstrap data Y ∗
n only through the

estimated function ĝ∗n+1; both the predictor Π(ĝ∗n+1, Y n, F̂n) and the construction of future

value Y ∗
n+1 in the sequel are based on the true dataset Y n in order to give validity to the

prediction intervals conditionally on the data Y n.

Algorithm A.1 Model-free bootstrap for prediction intervals for Yn+1

1. Based on the data Y n, estimate the transformation Hn and its inverse H−1
n by Ĥn

and Ĥ−1
n respectively. In addition, estimate gn+1 by ĝn+1.

2. Use Ĥn to obtain the transformed data, i.e., (ε
(n)
1 , ..., ε

(n)
n )′ = Ĥn(Y n). By construc-

tion, the variables ε
(n)
1 , ..., ε

(n)
n are approximately i.i.d.; let F̂n denote their empirical

distribution.

(a) Sample randomly (with replacement) the data ε
(n)
1 , ..., ε

(n)
n to create the bootstrap

pseudo-data ε∗1, ..., ε∗n.

(b) Use the inverse transformation Ĥ−1
n to create pseudo-data in the Y domain, i.e.,

let Y ∗
n = (Y ∗

1 , ..., Y
∗
n )

′ = Ĥ−1
n (ε∗1, ..., ε∗n).

(c) Calculate a bootstrap pseudo-response Y ∗
n+1 as the point ĝn+1(Y n, ε) where ε is

drawn randomly from the set (ε
(n)
1 , ..., ε

(n)
n ).

(d) Based on the pseudo-data Y ∗
n, estimate the function gn+1 by ĝ∗n+1 respectively.

(e) Calculate a bootstrap root replicate using eq. (43).

3. Steps (a)—(e) in the above should be repeated a large number of times (say B times),

and the B bootstrap root replicates should be collected in the form of an empirical

distribution whose α—quantile is denoted by q(α).

4. A (1− α)100% equal-tailed prediction interval for Yn+1 is given by

[Π + q(α/2), Π+ q(1− α/2)] (44)

where Π is short-hand for Π(ĝn+1, Y n, F̂n).

Sometimes, the empirical distribution F̂n converges to a limit distribution F that is of

known form (perhaps after estimating a finite-dimensional parameter). Using it instead

of the empirical F̂n results into the Limit Model-Free (LMF) resampling algorithm that is

given below. Note that now the point predictor Π is no more a function of F̂n but of F .

Hence, the LMF predictive root is denoted by

Yn+1 −Π(ĝn+1, Y n, F ) (45)
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whose distribution can be approximated by that of the LMF bootstrap predictive root

Y ∗
n+1 −Π(ĝ∗n+1, Y n, F ). (46)

Algorithm A.2 Limit Model-free (LMF) bootstrap for prediction intervals

for Yn+1

1. Based on the data Y n, estimate the transformation Hn and its inverse H−1
n by Ĥn

and Ĥ−1
n respectively. In addition, estimate gn+1 by ĝn+1.

2. (a) Generate bootstrap pseudo-data ε∗1, ..., ε∗n in an i.i.d. manner from F .

(b) Use the inverse transformation Ĥ−1
n to create pseudo-data in the Y domain, i.e.,

let Y ∗
n = (Y ∗

1 , ..., Y
∗
n )

′ = Ĥ−1
n (ε∗1, ..., ε∗n).

(c) Calculate a bootstrap pseudo-response Y ∗
n+1 as the point ĝn+1(Y n, ε) where ε is a

random draw from distribution F .

(d) Based on the pseudo-data Y ∗
n, estimate the function gn+1 by ĝ∗n+1 respectively.

(e) Calculate a bootstrap root replicate using eq. (46).

3. Steps (a)—(e) in the above should be repeated a large number of times (say B times),

and the B bootstrap root replicates should be collected in the form of an empirical

distribution whose α—quantile is denoted by q(α).

4. A (1− α)100% equal-tailed prediction interval for Yn+1 is given by

[Π + q(α/2), Π+ q(1− α/2)] (47)

where Π is short-hand for Π(ĝn+1, Y n, F ).

Both Model-Based and Model-Free bootstrap algorithms enable the construction of pre-

diction intervals for a pre-determined nominal coverage level. Point-prediction can use the

bandwidth b determined by the respective cross-validation procedures outlined for the MB

and MF cases in Sections 2.2 and 3.5 respectively. However to prevent under or overcoverage

with respect to the nominal level during calculation of prediction intervals we recommend

a double bootstrap procedure to accurately set the bandwidth b′ inside the bootstrap loop

which uses the resampled residuals from point prediction in both the MB and MF cases.

The algorithms A.3 and A.4 below enable the determination of this adjusted bandwidth b′.
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Algorithm A.3 MB double bootstrap for bandwidth in bootstrap loop

1. Based on the data Y1, . . . , Yn and the bandwidth b based on model-based cross-validation,

calculate the estimators μ̌(·) and σ̌(·), and the ‘residuals’ W̌1, . . . , W̌n using model (2).

2. Fit the AR(p) model (8) to the series W̌1, . . . , W̌n (with p selected by AIC minimiza-

tion), and obtain the Yule-Walker estimators φ̂1, . . . , φ̂p, and the error proxies

V̌t = W̌t − φ̂1W̌t−1 − · · · − φ̂pW̌t−p for t = p+ b+ 1, . . . , n.

3. Let V̌ ∗
t for t = 1, . . . , n, n + 1 be drawn randomly with replacement from the set { ˇ̌Vt

for t = p+ b+1, . . . , n} where ˇ̌Vt = V̌t− (n−p− b)−1
∑n

i=p+b+1 V̌i. Let I be a random

variable drawn from a discrete uniform distribution on the values p+b, p+b+1, . . . , n ,

and define the bootstrap initial conditions W̌ ∗
t = W̌t+I for t = −p + 1, . . . , 0. Then,

create the bootstrap data W̌ ∗
1 , . . . , W̌

∗
n via the AR recursion

W̌ ∗
t = φ̂1W̌

∗
t−1 + · · ·+ φ̂pW̌

∗
t−p + V̌ ∗

t for t = 1, . . . , (n+ 1).

This is the first bootstrap loop.

4. Create the bootstrap pseudo-series Y ∗
1 , . . . , Y

∗
n+1 by the formula

Y ∗
t = μ̌(t) + σ̌(t)W̌ ∗

t for t = 1, . . . , (n+ 1).

5. Based on the data Y ∗
1 , . . . , Y

∗
n (first n values only) and the bandwidth b based on model-

based cross-validation, calculate the estimators μ̌(·)∗ and σ̌(·)∗, and the ‘residuals’

W ∗
1 , . . . ,W

∗
n using model (2).

6. Fit the AR(p) model (8) to the series W ∗
1 , . . . ,W

∗
n (with p selected by AIC minimiza-

tion), and obtain the Yule-Walker estimators φ̂∗
1, . . . , φ̂

∗
p, and the error proxies

V̌ ∗
t = W ∗

t − φ̂∗
1W

∗
t−1 − · · · − φ̂∗

pW
∗
t−p for t = p+ b+ 1, . . . , n.

7. (a) Let V̌ ∗∗
t for t = 1, . . . , n, n+ 1 be drawn randomly with replacement from the set

{ ˇ̌V ∗
t for t = p+ b+ 1, . . . , n} where ˇ̌V ∗

t = V̌ ∗
t − (n− p− b)−1

∑n
i=p+b+1 V̌

∗
i . Let

I be a random variable drawn from a discrete uniform distribution on the values
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p + b, p + b + 1, . . . , n , and define the bootstrap initial conditions W̌ ∗∗
t = W ∗

t+I

for t = −p+ 1, . . . , 0. Then, create the bootstrap data W̌ ∗∗
1 , . . . , W̌ ∗∗

n via the AR

recursion

W̌ ∗∗
t = φ̂1W

∗∗
t−1 + · · ·+ φ̂pW

∗∗
t−p + V̌ ∗∗

t for t = 1, . . . , (n+ 1).

This is the second bootstrap loop.

(b) Create the bootstrap pseudo-series Y ∗∗
1 , . . . , Y ∗∗

n by the formula

Y ∗∗
t = μ̌(t)∗ + σ̌(t)∗W̌ ∗∗

t for t = 1, . . . , n.

(c) Re-calculate the estimators μ̌∗∗(·) and σ̌∗∗(·) from the bootstrap data Y ∗
1 , . . . , Y

∗
n .

The bootstrap estimators μ̌∗∗(·) and σ̌∗∗(·) are based on a bandwidth value b′ which
is different from the bandwidth b obtained by model-based cross-validation. This

gives rises to new bootstrap residuals W̌ ∗∗
1 , . . . , W̌ ∗∗

n on which an AR(p) model is

again fitted yielding the bootstrap Yule-Walker estimators φ̂∗∗
1 , . . . , φ̂∗∗

p .

(d) Calculate the bootstrap predictor

Π∗∗ = μ̌∗∗(n+ 1) + σ̌∗∗(n+ 1)
[
φ̂∗∗
1 W ∗

n + . . .+ φ̂∗∗
p W ∗

n−p+1

]
.

(e) Calculate a bootstrap future value

Y ∗∗
n+1 = μ̌∗(n+ 1) + σ̌∗(n+ 1)W ∗∗

n+1

where again W ∗∗
n+1 = φ̂∗

1W
∗
n + · · · + φ̂∗

pW
∗
n−p+1 + V̌ ∗∗

n+1 uses the original values

(W ∗
n , . . . ,W

∗
n−p+1); recall that V̌

∗∗
n+1 has already been generated in step (a) above.

(f) Calculate the bootstrap root replicate Y ∗∗
n+1 −Π∗∗.

8. Steps (a)—(f) in the above are repeated a large number of times (say C times), and

the C bootstrap root replicates are collected in the form of an empirical distribution

whose α–quantile is denoted by q(α).

9. Finally, a (1 − α)100% equal-tailed prediction interval for Y ∗
n+1 (nth value of Y ∗

n+1)

is given by

[Π∗ + q(α/2), Π∗ + q(1− α/2)]. (48)
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Here Π∗ is given by:

Π∗ = μ̌∗(n+ 1) + σ̌∗(n+ 1)
[
φ̂∗
1W

∗
n + · · ·+ φ̂∗

pW
∗
n−p+1

]
(49)

where φ̂∗
1, . . . , φ̂

∗
p are the Yule-Walker estimators of φ1, . . . , φp appearing in eq. (8).

10. Steps (3)–(9) in the above should be repeated a large number of times (say B times) to

obtain B values of Y ∗
n+1 and their corresponding (1 − α)100% equal-tailed prediction

intervals as outlined by Step (9) above. This can then be used to calculate a coverage

probability (CVR) for various values of the second bootstrap loop (C iterations) band-

width b′ while keeping the bandwidth b of the outer bootstrap loop (B iterations) fixed

to what was obtained from cross-validation. The value of b′ that gives the target CVR

can be used as the bandwidth for the bootstrap loop in Algorithm 2.1.

Algorithm A.4 MF double bootstrap for bandwidth in bootstrap loop

1. Based on the data Y n and the bandwidth b obtained from model-free cross-validation,

estimate the transformation Hn and its inverse H−1
n by Ĥn and Ĥ−1

n respectively. In

addition, estimate gn+1 by ĝn+1.

2. Use Ĥn to obtain the transformed data, i.e., (ε
(n)
1 , ..., ε

(n)
n )′ = Ĥn(Y n). By construc-

tion, the variables ε
(n)
1 , ..., ε

(n)
n are approximately i.i.d.

3. Sample randomly (with replacement) the data ε
(n)
1 , ..., ε

(n)
n to create the bootstrap pseudo-

data ε∗1, ..., ε∗n+1. This is the first bootstrap loop.

4. Use the inverse transformation Ĥ−1
n and the bandwidth b from model-free cross-validation

to create pseudo-data in the Y domain, i.e., let Y ∗
n+1 = (Y ∗

1 , ..., Y
∗
n+1)

′ = Ĥ−1
n (ε∗1, ..., ε∗n+1).

5. Based on the data Y ∗
n (first n values only) and the bandwidth b obtained from model-

free cross-validation, estimate the transformation H∗
n and its inverse H∗−1

n by Ĥ∗
n and

Ĥ∗−1
n respectively. In addition, estimate gn+1 by ĝ∗n+1.

6. Use Ĥ∗
n to obtain the transformed data, i.e., (ε

∗(n)
1 , ..., ε

∗(n)
n )′ = Ĥ∗

n(Y
∗
n). By construc-

tion, the variables ε
∗(n)
1 , ..., ε

∗(n)
n are approximately i.i.d; let F̂ ∗

n denote their empirical

distribution.

(a) Sample randomly (with replacement) the data ε
∗(n)
1 , ..., ε

∗(n)
n to create the bootstrap

pseudo-data ε
∗∗(n)
1 , ..., ε

∗∗(n)
n . This is the second bootstrap loop.

(b) Use the inverse transformation Ĥ∗−1
n and a bandwidth b

′
(different from b found

from model-free cross-validation) to create pseudo-data in the Y domain, i.e., let

Y ∗∗
n = (Y ∗∗

1 , ..., Y ∗∗
n )′ = Ĥ∗−1

n (ε∗∗1 , ..., ε∗∗n ).
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(c) Calculate a bootstrap pseudo-response Y ∗∗
n+1 as the point ĝ∗n+1(Y

∗
n, ε

∗) where ε∗ is

drawn randomly from the set (ε
∗(n)
1 , ..., ε

∗(n)
n ).

(d) Based on the pseudo-data Y ∗∗
n and bandwidth b′, estimate the function gn+1 by

ĝ∗∗n+1 respectively.

(e) Calculate a bootstrap root replicate using

Y ∗∗
n+1 −Π(ĝ∗∗n+1, Y

∗
n, F̂

∗
n). (50)

7. Steps (a)—(e) in the above should be repeated a large number of times (say C times),

and the C bootstrap root replicates should be collected in the form of an empirical

distribution whose α—quantile is denoted by q(α).

8. A (1 − α)100% equal-tailed prediction interval for Y ∗
n+1 (nth value of Y ∗

n+1) is given

by

[Π∗ + q(α/2), Π∗ + q(1− α/2)] (51)

where Π∗ is short-hand for Π(ĝ∗n+1, Y
∗
n, F̂

∗
n).

9. Steps (3)–(8) in the above should be repeated a large number of times (say B times) to

obtain B values of Y ∗
n+1 and their corresponding (1 − α)100% equal-tailed prediction

intervals as outlined by Step (8) above. This can then be used to calculate a coverage

probability (CVR) for various values of the second bootstrap loop (C iterations) band-

width b′ while keeping the bandwidth b of the outer bootstrap loop (B iterations) fixed

to what was obtained from cross-validation. The value of b′ that gives the target CVR

can be used as the bandwidth for the bootstrap loop in Algorithms A.1 and A.2.

B Appendix: RAMPFIT algorithm for analyzing climate

data with transitions

The RAMPFIT algorithm which can handle uneven time-spacing in observations was pro-

posed by (Mudelsee, 2000) for performing regression on climate data which shows transitions

such as the speleothem dataset considered in this paper. However RAMPFIT was not orig-

inally designed to handle arbitrary local stationarity which may be present in data. Here

we briefly outline the steps in RAMPFIT used to obtain point prediction estimates which

are used for comparison with their Model-Based and Model-Free counterparts.

Define x(i) = X(t(i)) where (Xt, t ∈ R) is an underlying continuous-time stochastic process.

For a time series x(i) measured at times t(i), i = 1, . . . , n, the model under consideration is

(Mudelsee, 2000):
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x(i) = xfit(i) + ε(i) (52)

It is assumed that the errors ε(i) are heteroskedastic and are distributed as N(0, σ(i)2).

The fitted model is a ramp function as defined below:

xfit(t) =

⎧⎪⎪⎨
⎪⎪⎩

x1, for t ≤ t1,

x1 + (t− t1)(x2− x1)/(t2− t1), for t1 ≤ t ≤ t2,

x2, for t ≥ t2

(53)

Here t1 and t2 denote the start and end of the ramp and x1, x2 denote the corresponding

values at those points. The regression model is fitted to data {t(i), x(i)}ni=1 by minimizing

the weighted sum of squares as given below:

SSQW (t1, x1, t2, x2) =
n∑

i=1

[x(i)− xfit(i)]
2

σ(i)2
(54)

Owing to the non-differentiabilities at t1 and t2, RAMPFIT does a search over a range of

values supplied for these 2 values and chooses the values (t̂1, x̂1, t̂2, x̂2) for which the SSQW

is minimum. In addition since σ(i) is not known an initial guess of this is supplied to the

algorithm following which the σ(i) values are recalculated from the obtained residuals. The

estimates (t̂1, x̂1, t̂2, x̂2) are then regenerated. These steps are repeated till MSE values of

point prediction converge.

The full algorithm is described below:

Algorithm B.1 RAMPFIT REGRESSION

1. Set initial estimate of σ(i) = i with i = 1, . . . , n

2. Set search ranges [t1min, t1max] and [t2min,t2max] for values of t1 and t2

3. Calculate SSQW using (53) and (54) over this grid of t1 and t2 values; denote a

typical point in this grid as (t̄1, t̄2)

4. Determine (t̂1, x̂1, t̂2, x̂2) = argmin [SSQW (t̄1, x̂1, t̄2, x̂2)] and obtain xfit

5. Calculate residuals e(i) = x(t(i))− xfit(t(i))

6. Re-estimate the variance σ(i) from e(i) using k-nearest-neighbour smoothing

7. Repeat steps (2) to (6) above till MSE values converge.
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